171 lines
4.7 KiB
Plaintext
171 lines
4.7 KiB
Plaintext
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||
import Nevanlinna.complexHarmonic
|
||
import Nevanlinna.complexHarmonic
|
||
import Nevanlinna.holomorphicAt
|
||
|
||
|
||
theorem CauchyRiemann₆
|
||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||
{f : E → F}
|
||
{z : E} :
|
||
(DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ ∀ e, partialDeriv ℝ (Complex.I • e) f z = Complex.I • partialDeriv ℝ e f z := by
|
||
constructor
|
||
|
||
· -- Direction "→"
|
||
intro h
|
||
constructor
|
||
· exact DifferentiableAt.restrictScalars ℝ h
|
||
· unfold partialDeriv
|
||
conv =>
|
||
intro e
|
||
left
|
||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||
simp
|
||
rw [← mul_one Complex.I]
|
||
rw [← smul_eq_mul]
|
||
conv =>
|
||
intro e
|
||
right
|
||
right
|
||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||
simp
|
||
|
||
· -- Direction "←"
|
||
intro ⟨h₁, h₂⟩
|
||
apply (differentiableAt_iff_restrictScalars ℝ h₁).2
|
||
|
||
use {
|
||
toFun := fderiv ℝ f z
|
||
map_add' := fun x y => ContinuousLinearMap.map_add (fderiv ℝ f z) x y
|
||
map_smul' := by
|
||
simp
|
||
intro m x
|
||
have : m = m.re + m.im • Complex.I := by simp
|
||
rw [this, add_smul, add_smul, ContinuousLinearMap.map_add]
|
||
congr
|
||
simp
|
||
rw [smul_assoc, smul_assoc, ContinuousLinearMap.map_smul (fderiv ℝ f z) m.2]
|
||
congr
|
||
exact h₂ x
|
||
}
|
||
rfl
|
||
|
||
|
||
theorem CauchyRiemann₇
|
||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||
{f : ℂ → F}
|
||
{z : ℂ} :
|
||
(DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||
constructor
|
||
· intro hf
|
||
constructor
|
||
· exact (CauchyRiemann₆.1 hf).1
|
||
· let A := (CauchyRiemann₆.1 hf).2 1
|
||
simp at A
|
||
exact A
|
||
· intro ⟨h₁, h₂⟩
|
||
apply CauchyRiemann₆.2
|
||
constructor
|
||
· exact h₁
|
||
· intro e
|
||
have : Complex.I • e = e • Complex.I := by
|
||
rw [smul_eq_mul, smul_eq_mul]
|
||
exact CommMonoid.mul_comm Complex.I e
|
||
rw [this]
|
||
have : e = e.re + e.im • Complex.I := by simp
|
||
rw [this, add_smul, partialDeriv_add₁, partialDeriv_add₁]
|
||
simp
|
||
rw [← smul_eq_mul]
|
||
have : partialDeriv ℝ ((e.re : ℝ) • Complex.I) f = partialDeriv ℝ ((e.re : ℂ) • Complex.I) f := by rfl
|
||
rw [← this, partialDeriv_smul₁ ℝ]
|
||
have : (e.re : ℂ) = (e.re : ℝ) • (1 : ℂ) := by simp
|
||
rw [this, partialDeriv_smul₁ ℝ]
|
||
have : partialDeriv ℝ ((e.im : ℂ) * Complex.I) f = partialDeriv ℝ ((e.im : ℝ) • Complex.I) f := by rfl
|
||
rw [this, partialDeriv_smul₁ ℝ]
|
||
simp
|
||
rw [h₂]
|
||
rw [smul_comm]
|
||
congr
|
||
rw [mul_assoc]
|
||
simp
|
||
nth_rw 2 [smul_comm]
|
||
rw [← smul_assoc]
|
||
simp
|
||
have : - (e.im : ℂ) = (-e.im : ℝ) • (1 : ℂ) := by simp
|
||
rw [this, partialDeriv_smul₁ ℝ]
|
||
simp
|
||
|
||
|
||
|
||
/-
|
||
|
||
A harmonic, real-valued function on ℂ is the real part of a suitable holomorphic function.
|
||
|
||
-/
|
||
|
||
theorem harmonic_is_realOfHolomorphic
|
||
{f : ℂ → ℝ}
|
||
(hf : ∀ z, HarmonicAt f z) :
|
||
∃ F : ℂ → ℂ, ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by
|
||
|
||
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
||
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
||
|
||
let g : ℂ → ℂ := f_1 - Complex.I • f_I
|
||
|
||
have reg₀ : Differentiable ℝ g := by
|
||
let smulICLM : ℂ ≃L[ℝ] ℂ :=
|
||
{
|
||
toFun := fun x ↦ Complex.I • x
|
||
map_add' := fun x y => DistribSMul.smul_add Complex.I x y
|
||
map_smul' := fun m x => (smul_comm ((RingHom.id ℝ) m) Complex.I x).symm
|
||
invFun := fun x ↦ (Complex.I)⁻¹ • x
|
||
left_inv := by
|
||
intro x
|
||
simp
|
||
rw [← mul_assoc, mul_comm]
|
||
simp
|
||
right_inv := by
|
||
intro x
|
||
simp
|
||
rw [← mul_assoc]
|
||
simp
|
||
continuous_toFun := continuous_const_smul Complex.I
|
||
continuous_invFun := continuous_const_smul (Complex.I)⁻¹
|
||
}
|
||
|
||
apply Differentiable.sub
|
||
apply Differentiable.comp
|
||
exact ContinuousLinearMap.differentiable Complex.ofRealCLM
|
||
intro z
|
||
sorry
|
||
apply Differentiable.comp
|
||
sorry
|
||
sorry
|
||
|
||
|
||
have reg₁ : Differentiable ℂ g := by
|
||
intro z
|
||
apply CauchyRiemann₇.2
|
||
constructor
|
||
· exact reg₀ z
|
||
· dsimp [g]
|
||
have : f_1 - Complex.I • f_I = f_1 + (- Complex.I • f_I) := by
|
||
rw [sub_eq_add_neg]
|
||
simp
|
||
rw [this, partialDeriv_add₂, partialDeriv_add₂]
|
||
simp
|
||
dsimp [f_1, f_I]
|
||
|
||
sorry
|
||
sorry
|
||
sorry
|
||
sorry
|
||
sorry
|
||
|
||
|
||
|
||
|
||
sorry
|