Update harmonicAt_meanValue.lean
This commit is contained in:
parent
4642c017c7
commit
4b6cdcc76a
|
@ -65,24 +65,43 @@ theorem harmonic_meanValue
|
||||||
apply inv_mul_cancel
|
apply inv_mul_cancel
|
||||||
apply circleMap_ne_center
|
apply circleMap_ne_center
|
||||||
exact Ne.symm (ne_of_lt hR)
|
exact Ne.symm (ne_of_lt hR)
|
||||||
simp_rw [t₁] at this
|
have t'₁ {θ : ℝ} : circleMap 0 R θ = circleMap z R θ - z := by
|
||||||
|
exact Eq.symm (circleMap_sub_center z R θ)
|
||||||
|
simp_rw [← t'₁, t₁] at this
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ℝ) in (0)..2 * Real.pi, F (circleMap 0 R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F 0)) := by
|
have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ℝ) in (0)..2 * Real.pi, F (circleMap z R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F z)) := by
|
||||||
rw [this]
|
rw [this]
|
||||||
simp at t₂
|
simp at t₂
|
||||||
have xx {z : ℂ} : (F z).re = f z := by
|
have xx {x : ℝ} : (F (circleMap z R x)).re = f (circleMap z R x) := by
|
||||||
rw [← h₂F]
|
rw [← h₂F]
|
||||||
simp
|
simp
|
||||||
simp_rw [xx] at t₂
|
simp
|
||||||
|
rw [Complex.dist_eq]
|
||||||
|
rw [circleMap_sub_center]
|
||||||
|
simp
|
||||||
|
rwa [abs_of_nonneg (le_of_lt hR)]
|
||||||
have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl
|
have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl
|
||||||
rw [x₁] at t₂
|
rw [x₁] at t₂
|
||||||
rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂
|
rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂
|
||||||
simp at t₂
|
simp at t₂
|
||||||
simp_rw [xx] at t₂
|
simp_rw [xx] at t₂
|
||||||
|
have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl
|
||||||
|
rw [x₁] at t₂
|
||||||
|
have : Complex.reCLM (F z) = f z := by
|
||||||
|
apply h₂F
|
||||||
|
simp
|
||||||
|
exact gt_trans hρ hR
|
||||||
|
rw [this] at t₂
|
||||||
exact t₂
|
exact t₂
|
||||||
|
|
||||||
-- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
-- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
||||||
apply Continuous.intervalIntegrable
|
apply ContinuousOn.intervalIntegrable
|
||||||
apply Continuous.comp
|
apply ContinuousOn.comp reg₀F.continuousOn _
|
||||||
exact regF.continuous
|
intro θ _
|
||||||
exact continuous_circleMap 0 R
|
simp
|
||||||
|
rw [Complex.dist_eq, circleMap_sub_center]
|
||||||
|
simp
|
||||||
|
rwa [abs_of_nonneg (le_of_lt hR)]
|
||||||
|
apply Continuous.continuousOn
|
||||||
|
exact continuous_circleMap z R
|
||||||
|
|
Loading…
Reference in New Issue