working…

This commit is contained in:
Stefan Kebekus 2024-08-08 14:26:53 +02:00
parent 75ce3b31ef
commit 4642c017c7
2 changed files with 40 additions and 17 deletions

View File

@ -3,28 +3,51 @@ import Nevanlinna.holomorphic_examples
theorem harmonic_meanValue
{f : }
(hf : ∀ z, HarmonicAt f z)
(R : )
(hR : R > 0) :
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap 0 R x)) = 2 * Real.pi * f 0
{z : }
(ρ R : )
(hR : R > 0)
(hρ : ρ > R)
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
:
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
:= by
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic hf
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf
have regF : Differentiable F := fun z ↦ HolomorphicAt.differentiableAt (h₁F z)
have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by
intro x hx
exact gt_trans hρ hx
have : (∮ (z : ) in C(0, R), z⁻¹ • F z) = (2 * ↑Real.pi * Complex.I) • F 0 := by
have reg₀F : DifferentiableOn F (Metric.ball z ρ) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hx
have reg₁F : DifferentiableOn F (Metric.ball z R) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hrρ hx
have : (∮ (x : ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by
let s : Set := ∅
let hs : s.Countable := Set.countable_empty
let _ : := 0
let hw : (0 : ) ∈ Metric.ball 0 R := Metric.mem_ball_self hR
let hc : ContinuousOn F (Metric.closedBall 0 R) := by
apply Continuous.continuousOn
exact regF.continuous
let hd : ∀ x ∈ Metric.ball 0 R \ s, DifferentiableAt F x := by
intro x _
exact regF x
have hw : (z : ) ∈ Metric.ball z R := Metric.mem_ball_self hR
have hc : ContinuousOn F (Metric.closedBall z R) := by
apply reg₀F.continuousOn.mono
intro x hx
simp at hx
simp
linarith
have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt F x := by
intro x hx
let A := reg₁F x hx.1
apply A.differentiableAt
apply (IsOpen.mem_nhds_iff ?hs).mpr
exact hx.1
exact Metric.isOpen_ball
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
simp at CIF
assumption
@ -32,7 +55,7 @@ theorem harmonic_meanValue
unfold circleIntegral at this
simp_rw [deriv_circleMap] at this
have t₁ {θ : } : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap 0 R θ) = Complex.I • F (circleMap 0 R θ) := by
have t₁ {θ : } : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by
rw [← smul_assoc]
congr 1
simp

View File

@ -1,6 +1,6 @@
import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_primitive2
import Nevanlinna.holomorphic_primitive
import Nevanlinna.mathlibAddOn