From 4b6cdcc76a1e81eae06c24fcbcc3164f5e4b80ff Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Thu, 8 Aug 2024 15:04:41 +0200 Subject: [PATCH] Update harmonicAt_meanValue.lean --- Nevanlinna/harmonicAt_meanValue.lean | 35 +++++++++++++++++++++------- 1 file changed, 27 insertions(+), 8 deletions(-) diff --git a/Nevanlinna/harmonicAt_meanValue.lean b/Nevanlinna/harmonicAt_meanValue.lean index 7b4f2cf..88c0bd1 100644 --- a/Nevanlinna/harmonicAt_meanValue.lean +++ b/Nevanlinna/harmonicAt_meanValue.lean @@ -65,24 +65,43 @@ theorem harmonic_meanValue apply inv_mul_cancel apply circleMap_ne_center exact Ne.symm (ne_of_lt hR) - simp_rw [t₁] at this + have t'₁ {θ : ℝ} : circleMap 0 R θ = circleMap z R θ - z := by + exact Eq.symm (circleMap_sub_center z R θ) + simp_rw [← t'₁, t₁] at this simp at this - have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ℝ) in (0)..2 * Real.pi, F (circleMap 0 R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F 0)) := by + have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ℝ) in (0)..2 * Real.pi, F (circleMap z R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F z)) := by rw [this] simp at t₂ - have xx {z : ℂ} : (F z).re = f z := by + have xx {x : ℝ} : (F (circleMap z R x)).re = f (circleMap z R x) := by rw [← h₂F] simp - simp_rw [xx] at t₂ + simp + rw [Complex.dist_eq] + rw [circleMap_sub_center] + simp + rwa [abs_of_nonneg (le_of_lt hR)] have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl rw [x₁] at t₂ rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂ simp at t₂ simp_rw [xx] at t₂ + have x₁ {z : ℂ} : z.re = Complex.reCLM z := by rfl + rw [x₁] at t₂ + have : Complex.reCLM (F z) = f z := by + apply h₂F + simp + exact gt_trans hρ hR + rw [this] at t₂ exact t₂ + -- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi) - apply Continuous.intervalIntegrable - apply Continuous.comp - exact regF.continuous - exact continuous_circleMap 0 R + apply ContinuousOn.intervalIntegrable + apply ContinuousOn.comp reg₀F.continuousOn _ + intro θ _ + simp + rw [Complex.dist_eq, circleMap_sub_center] + simp + rwa [abs_of_nonneg (le_of_lt hR)] + apply Continuous.continuousOn + exact continuous_circleMap z R