working
This commit is contained in:
parent
854b7ef492
commit
4387149e33
|
@ -289,47 +289,6 @@ theorem primitive_hasDerivAtBasepoint
|
|||
exact hasDerivAt_id z₀
|
||||
|
||||
|
||||
lemma integrability₁
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
continuity
|
||||
|
||||
|
||||
lemma integrability₂
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
continuity
|
||||
fun_prop
|
||||
|
||||
|
||||
theorem primitive_additivity
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
|
@ -545,7 +504,39 @@ theorem primitive_additivity'
|
|||
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
||||
:
|
||||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||
sorry
|
||||
|
||||
let ε := R - dist z₀ z₁
|
||||
let rx := dist z₀.re z₁.re + ε/(2 : ℝ)
|
||||
let ry := dist z₀.im z₁.im + ε/(2 : ℝ)
|
||||
|
||||
have h'ry : 0 < ry := by
|
||||
sorry
|
||||
|
||||
have h'f : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||
sorry
|
||||
|
||||
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||
sorry
|
||||
|
||||
let A := primitive_additivity f z₀ rx ry h'ry h'f z₁ h'z₁
|
||||
obtain ⟨εx, εy, hε⟩ := A
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy)
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
apply IsOpen.reProdIm
|
||||
exact Metric.isOpen_ball
|
||||
exact Metric.isOpen_ball
|
||||
constructor
|
||||
· simp
|
||||
sorry
|
||||
· simp
|
||||
sorry
|
||||
· intro x hx
|
||||
simp
|
||||
rw [← sub_zero (primitive z₀ f x), ← hε x hx]
|
||||
abel
|
||||
|
||||
|
||||
theorem primitive_hasDerivAt
|
||||
|
|
Loading…
Reference in New Issue