nevanlinna/Nevanlinna/holomorphic_primitive2.lean

625 lines
20 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Data.ENNReal.Basic
noncomputable def primitive
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
→ ( → E) → ( → E) := by
intro z₀
intro f
exact fun z ↦ (∫ (x : ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ) in z₀.im..z.im, f ⟨z.re, x⟩
theorem primitive_zeroAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ : ) :
(primitive z₀ f) z₀ = 0 := by
unfold primitive
simp
theorem primitive_fderivAtBasepointZero
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(hf : ContinuousAt f 0) :
HasDerivAt (primitive 0 f) (f 0) 0 := by
unfold primitive
simp
apply hasDerivAt_iff_isLittleO.2
simp
rw [Asymptotics.isLittleO_iff]
intro c hc
have {z : } {e : E} : z • e = (∫ (_ : ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ) in (0)..(z.im), e:= by
simp
rw [smul_comm]
rw [← smul_assoc]
simp
have : z.re • e = (z.re : ) • e := by exact rfl
rw [this, ← add_smul]
simp
conv =>
left
intro x
left
arg 1
arg 2
rw [this]
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
have t₀ {r : } : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
continuity
have t₁ {r : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
conv =>
left
intro x
left
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem]
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ))
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
have h₂s : 0 ∈ s := by
apply Set.mem_preimage.mpr
apply Metric.mem_ball_self
linarith
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : )) := by
intro y hy
apply mem_ball_iff_norm.mp (h₂ε hy)
use Metric.ball 0 (ε / (4 : ))
constructor
· apply Metric.ball_mem_nhds 0
linarith
· intro y hy
have h₁y : |y.re| < ε / 4 := by
calc |y.re|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have h₂y : |y.im| < ε / 4 := by
calc |y.im|
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have intervalComputation {x' y' : } (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
let A := h.1
let B := h.2
rcases le_total 0 y' with hy | hy
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonneg hy]
rw [abs_of_nonneg (le_of_lt A)]
exact B
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonpos hy]
rw [abs_of_nonpos]
linarith [h.1]
exact B
have t₁ : ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : )) * |y.re - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.re| := intervalComputation hx
_ < ε / 4 := h₁y
apply le_of_lt
apply h₃ε { re := x, im := 0 }
rw [mem_ball_iff_norm]
simp
have : { re := x, im := 0 } = (x : ) := by rfl
rw [this]
rw [Complex.abs_ofReal]
linarith
have t₂ : ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : )) * |y.im - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.im| := intervalComputation hx
_ < ε / 4 := h₂y
apply le_of_lt
apply h₃ε { re := y.re, im := x }
simp
calc Complex.abs { re := y.re, im := x }
_ ≤ |y.re| + |x| := by
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
_ < ε := by
linarith
calc ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
apply norm_add_le
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
simp
rw [norm_smul]
simp
_ ≤ (c / (4 : )) * |y.re - 0| + (c / (4 : )) * |y.im - 0| := by
apply add_le_add
exact t₁
exact t₂
_ ≤ (c / (4 : )) * (|y.re| + |y.im|) := by
simp
rw [mul_add]
_ ≤ (c / (4 : )) * (4 * ‖y‖) := by
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
calc |y.re| + |y.im|
_ ≤ ‖y‖ + ‖y‖ := by
apply add_le_add
apply Complex.abs_re_le_abs
apply Complex.abs_im_le_abs
_ ≤ 4 * ‖y‖ := by
rw [← two_mul]
apply mul_le_mul
linarith
rfl
exact norm_nonneg y
linarith
apply mul_le_mul
rfl
exact this
apply add_nonneg
apply abs_nonneg
apply abs_nonneg
linarith
_ ≤ c * ‖y‖ := by
linarith
theorem primitive_translation
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ t : ) :
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
funext z
unfold primitive
simp
let g : → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
have {x : } : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
simp
congr 1
let g : → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
have {x : } : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
simp
theorem primitive_hasDerivAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(z₀ : )
(hf : ContinuousAt f z₀) :
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
let g := f ∘ fun z ↦ z + z₀
have : Continuous g := by continuity
let A := primitive_fderivAtBasepointZero g this
simp at A
let B := primitive_translation g z₀ z₀
simp at B
have : (g ∘ fun z ↦ (z - z₀)) = f := by
funext z
dsimp [g]
simp
rw [this] at B
rw [B]
have : f z₀ = (1 : ) • (f z₀) := by
exact (MulAction.one_smul (f z₀)).symm
conv =>
arg 2
rw [this]
apply HasDerivAt.scomp
simp
have : g 0 = f z₀ := by simp [g]
rw [← this]
exact A
apply HasDerivAt.sub_const
have : (fun (x : ) ↦ x) = id := by
funext x
simp
rw [this]
exact hasDerivAt_id z₀
theorem primitive_additivity
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ : )
(rx ry : )
(hry : 0 < ry)
(hf : DifferentiableOn f (Metric.ball z₀.re rx × Metric.ball z₀.im ry))
(z₁ : )
(hz₁ : z₁ ∈ (Metric.ball z₀.re rx × Metric.ball z₀.im ry))
:
∃ εx εy : , ∀ z ∈ (Metric.ball z₁.re εx × Metric.ball z₁.im εy), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
use rx - dist z₀.re z₁.re
use ry - dist z₀.im z₁.im
intro z hz
unfold primitive
have : (∫ (x : ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₀.re z₁.re
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
have {b : } : ((fun x => { re := x, im := b }) : ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
apply Continuous.continuousOn
rw [this]
continuity
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
intro w hw
simp
apply Complex.mem_reProdIm.mpr
constructor
· simp
calc dist w z₀.re
_ ≤ dist z₁.re z₀.re := by apply Real.dist_right_le_of_mem_uIcc; rwa [Set.uIcc_comm] at hw
_ < rx := by apply Metric.mem_ball.mp (Complex.mem_reProdIm.1 hz₁).1
· simpa
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₁.re z.re
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
have {b : } : ((fun x => { re := x, im := b }) : ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
apply Continuous.continuousOn
rw [this]
continuity
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₁.re z.re) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
intro w hw
simp
constructor
· simp
calc dist w z₀.re
_ ≤ dist w z₁.re + dist z₁.re z₀.re := by exact dist_triangle w z₁.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
rw [Set.uIcc_comm] at hw
exact Real.dist_right_le_of_mem_uIcc hw
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simpa
rw [this]
have : (∫ (x : ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ) in z₁.im..z.im, f { re := z.re, im := x }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₀.im z₁.im
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
apply Continuous.continuousOn
have {b : }: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
fun_prop
fun_prop
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₀.im z₁.im) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
intro w hw
constructor
· simp
calc dist z.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist w z₀.im
_ ≤ dist z₁.im z₀.im := by rw [Set.uIcc_comm] at hw; exact Real.dist_right_le_of_mem_uIcc hw
_ < ry := by
rw [← Metric.mem_ball]
exact hz₁.2
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₁.im z.im
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
apply Continuous.continuousOn
have {b : }: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
fun_prop
fun_prop
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₁.im z.im) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
intro w hw
constructor
· simp
calc dist z.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist w z₀.im
_ ≤ dist w z₁.im + dist z₁.im z₀.im := by exact dist_triangle w z₁.im z₀.im
_ ≤ dist z.im z₁.im + dist z₁.im z₀.im := by
apply (add_le_add_iff_right (dist z₁.im z₀.im)).mpr
rw [Set.uIcc_comm] at hw
exact Real.dist_right_le_of_mem_uIcc hw
_ < (ry - dist z₀.im z₁.im) + dist z₁.im z₀.im := by
apply (add_lt_add_iff_right (dist z₁.im z₀.im)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).2
_ = ry := by
rw [dist_comm]
simp
rw [this]
simp
have {a b c d e f g h : E} : (a + b) + (c + d) - (e + f) - (g + h) = b + (a - g) - e - f + d - h + (c) := by
abel
rw [this]
have H' : DifferentiableOn f (Set.uIcc z₁.re z.re × Set.uIcc z₀.im z₁.im) := by
apply DifferentiableOn.mono hf
intro x hx
constructor
· simp
calc dist x.re z₀.re
_ ≤ dist x.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle x.re z₁.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
rw [Set.uIcc_comm] at hx
apply Real.dist_right_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).1
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist x.im z₀.im
_ ≤ dist z₀.im z₁.im := by rw [dist_comm]; exact Real.dist_left_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).2
_ < ry := by
rw [dist_comm]
exact Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz₁).2
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H'
have {x : } {w : } : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
apply Complex.ext
· simp
· simp
simp_rw [this] at A
have {x : } {w : } : w.re + x * Complex.I = { re := w.re, im := x } := by
apply Complex.ext
· simp
· simp
simp_rw [this] at A
rw [← A]
abel
theorem primitive_additivity'
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
{z₀ z₁ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz₁ : z₁ ∈ Metric.ball z₀ R)
:
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
let ε := R - dist z₀ z₁
let rx := dist z₀.re z₁.re + ε/(2 : )
let ry := dist z₀.im z₁.im + ε/(2 : )
have h'ry : 0 < ry := by
sorry
have h'f : DifferentiableOn f (Metric.ball z₀.re rx × Metric.ball z₀.im ry) := by
sorry
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx × Metric.ball z₀.im ry) := by
sorry
let A := primitive_additivity f z₀ rx ry h'ry h'f z₁ h'z₁
obtain ⟨εx, εy, hε⟩ := A
apply Filter.eventuallyEq_iff_exists_mem.2
use (Metric.ball z₁.re εx × Metric.ball z₁.im εy)
constructor
· apply IsOpen.mem_nhds
apply IsOpen.reProdIm
exact Metric.isOpen_ball
exact Metric.isOpen_ball
constructor
· simp
sorry
· simp
sorry
· intro x hx
simp
rw [← sub_zero (primitive z₀ f x), ← hε x hx]
abel
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
{z₀ z : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz : z ∈ Metric.ball z₀ R) :
HasDerivAt (primitive z₀ f) (f z) z := by
let A := primitive_additivity' hf hz
rw [Filter.EventuallyEq.hasDerivAt_iff A]
rw [← add_zero (f z)]
apply HasDerivAt.add
apply primitive_hasDerivAtBasepoint
apply hf.continuousOn.continuousAt
apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz
apply hasDerivAt_const
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(z₀ : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
DifferentiableOn (primitive z₀ f) (Metric.ball z₀ R) := by
intro z hz
apply DifferentiableAt.differentiableWithinAt
exact (primitive_hasDerivAt hf hz).differentiableAt
theorem primitive_hasFderivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(z₀ : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ).flip (f z)) z := by
intro z hz
rw [hasFDerivAt_iff_hasDerivAt]
simp
apply primitive_hasDerivAt hf hz
theorem primitive_hasFderivAt'
{f : }
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul (f z)) z := by
intro z hz
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt hf hz
theorem primitive_fderiv
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ).flip (f z) := by
intro z hz
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt z₀ R hf z hz
theorem primitive_fderiv'
{f : }
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = ContinuousLinearMap.lsmul (f z) := by
intro z hz
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt' hf z hz