working
This commit is contained in:
parent
854b7ef492
commit
4387149e33
|
@ -289,47 +289,6 @@ theorem primitive_hasDerivAtBasepoint
|
||||||
exact hasDerivAt_id z₀
|
exact hasDerivAt_id z₀
|
||||||
|
|
||||||
|
|
||||||
lemma integrability₁
|
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
|
||||||
(f : ℂ → E)
|
|
||||||
(hf : Differentiable ℂ f)
|
|
||||||
(a₁ a₂ b : ℝ) :
|
|
||||||
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply Continuous.comp
|
|
||||||
exact Differentiable.continuous hf
|
|
||||||
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
|
||||||
funext x
|
|
||||||
apply Complex.ext
|
|
||||||
rw [Complex.add_re]
|
|
||||||
simp
|
|
||||||
rw [Complex.add_im]
|
|
||||||
simp
|
|
||||||
rw [this]
|
|
||||||
continuity
|
|
||||||
|
|
||||||
|
|
||||||
lemma integrability₂
|
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
|
||||||
(f : ℂ → E)
|
|
||||||
(hf : Differentiable ℂ f)
|
|
||||||
(a₁ a₂ b : ℝ) :
|
|
||||||
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply Continuous.comp
|
|
||||||
exact Differentiable.continuous hf
|
|
||||||
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
|
||||||
funext x
|
|
||||||
apply Complex.ext
|
|
||||||
rw [Complex.add_re]
|
|
||||||
simp
|
|
||||||
simp
|
|
||||||
rw [this]
|
|
||||||
apply Continuous.add
|
|
||||||
continuity
|
|
||||||
fun_prop
|
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_additivity
|
theorem primitive_additivity
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
(f : ℂ → E)
|
||||||
|
@ -545,8 +504,40 @@ theorem primitive_additivity'
|
||||||
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
||||||
:
|
:
|
||||||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||||
|
|
||||||
|
let ε := R - dist z₀ z₁
|
||||||
|
let rx := dist z₀.re z₁.re + ε/(2 : ℝ)
|
||||||
|
let ry := dist z₀.im z₁.im + ε/(2 : ℝ)
|
||||||
|
|
||||||
|
have h'ry : 0 < ry := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
have h'f : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
let A := primitive_additivity f z₀ rx ry h'ry h'f z₁ h'z₁
|
||||||
|
obtain ⟨εx, εy, hε⟩ := A
|
||||||
|
|
||||||
|
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy)
|
||||||
|
constructor
|
||||||
|
· apply IsOpen.mem_nhds
|
||||||
|
apply IsOpen.reProdIm
|
||||||
|
exact Metric.isOpen_ball
|
||||||
|
exact Metric.isOpen_ball
|
||||||
|
constructor
|
||||||
|
· simp
|
||||||
|
sorry
|
||||||
|
· simp
|
||||||
|
sorry
|
||||||
|
· intro x hx
|
||||||
|
simp
|
||||||
|
rw [← sub_zero (primitive z₀ f x), ← hε x hx]
|
||||||
|
abel
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_hasDerivAt
|
theorem primitive_hasDerivAt
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
|
Loading…
Reference in New Issue