Working…

This commit is contained in:
Stefan Kebekus 2024-11-28 18:57:43 +01:00
parent 2b7ab1af9d
commit 3f24072412
3 changed files with 39 additions and 11 deletions

View File

@ -159,3 +159,26 @@ theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
apply MeromorphicAt.order_congr
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
· simp [hz]
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analyticOnNhd
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
AnalyticOnNhd f U := by
apply StronglyMeromorphicOn.analytic
intro z hz
let A := h₂f z hz
unfold MeromorphicOn.divisor at A
simp [hz] at A
by_cases h : (h₁f z hz).meromorphicAt.order =
· rw [h]
simp
· rw [WithTop.le_untop'_iff] at A
tauto
tauto
assumption

View File

@ -27,7 +27,7 @@ theorem StronglyMeromorphicOn.analytic
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
∀ z ∈ U, AnalyticAt f z := by
AnalyticOnNhd f U := by
intro z hz
apply StronglyMeromorphicAt.analytic
exact h₂f z hz

View File

@ -324,7 +324,6 @@ theorem MeromorphicOn.decompose₃
· apply AnalyticAt.analyticWithinAt
rw [analyticAt_of_mul_analytic]
sorry
have h₂h : StronglyMeromorphicOn h U := by
@ -383,8 +382,8 @@ theorem MeromorphicOn.decompose₃'
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
have h₃h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ := by
intro z hz
apply stronglyMeromorphicOn_ratlPolynomial₃order
sorry
let g' := f * h₁
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
have h₂g' : h₁g'.divisor.toFun = 0 := by
@ -394,20 +393,26 @@ theorem MeromorphicOn.decompose₃'
simp
let g := h₁g'.makeStronglyMeromorphicOn
have h₁g : StronglyMeromorphicOn g U := by
sorry
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
sorry
have h₃g : AnalyticOn g U := by
sorry
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
rw [h₂g']
have h₃g : AnalyticOnNhd g U := by
apply StronglyMeromorphicOn.analyticOnNhd
rw [h₂g]
simp
assumption
have h₄g : ∀ u : U, g u ≠ 0 := by
intro u
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
sorry
use g
constructor
· exact StronglyMeromorphicOn.meromorphicOn h₁g
· constructor
· exact h₃g
· exact AnalyticOnNhd.analyticOn h₃g
· constructor
· exact h₄g
· sorry