Working…
This commit is contained in:
parent
2b7ab1af9d
commit
3f24072412
@ -159,3 +159,26 @@ theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
||||
apply MeromorphicAt.order_congr
|
||||
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
|
||||
· simp [hz]
|
||||
|
||||
|
||||
|
||||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
||||
theorem StronglyMeromorphicOn.analyticOnNhd
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
|
||||
AnalyticOnNhd ℂ f U := by
|
||||
|
||||
apply StronglyMeromorphicOn.analytic
|
||||
intro z hz
|
||||
let A := h₂f z hz
|
||||
unfold MeromorphicOn.divisor at A
|
||||
simp [hz] at A
|
||||
by_cases h : (h₁f z hz).meromorphicAt.order = ⊤
|
||||
· rw [h]
|
||||
simp
|
||||
· rw [WithTop.le_untop'_iff] at A
|
||||
tauto
|
||||
tauto
|
||||
assumption
|
||||
|
@ -27,7 +27,7 @@ theorem StronglyMeromorphicOn.analytic
|
||||
{U : Set ℂ}
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
|
||||
∀ z ∈ U, AnalyticAt ℂ f z := by
|
||||
AnalyticOnNhd ℂ f U := by
|
||||
intro z hz
|
||||
apply StronglyMeromorphicAt.analytic
|
||||
exact h₂f z hz
|
||||
|
@ -324,7 +324,6 @@ theorem MeromorphicOn.decompose₃
|
||||
· apply AnalyticAt.analyticWithinAt
|
||||
rw [analyticAt_of_mul_analytic]
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
have h₂h : StronglyMeromorphicOn h U := by
|
||||
@ -383,8 +382,8 @@ theorem MeromorphicOn.decompose₃'
|
||||
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||
intro z hz
|
||||
apply stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
|
||||
sorry
|
||||
let g' := f * h₁
|
||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||
have h₂g' : h₁g'.divisor.toFun = 0 := by
|
||||
@ -394,20 +393,26 @@ theorem MeromorphicOn.decompose₃'
|
||||
simp
|
||||
|
||||
let g := h₁g'.makeStronglyMeromorphicOn
|
||||
have h₁g : StronglyMeromorphicOn g U := by
|
||||
sorry
|
||||
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
|
||||
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
|
||||
sorry
|
||||
have h₃g : AnalyticOn ℂ g U := by
|
||||
sorry
|
||||
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
|
||||
rw [h₂g']
|
||||
have h₃g : AnalyticOnNhd ℂ g U := by
|
||||
apply StronglyMeromorphicOn.analyticOnNhd
|
||||
rw [h₂g]
|
||||
simp
|
||||
assumption
|
||||
have h₄g : ∀ u : U, g u ≠ 0 := by
|
||||
intro u
|
||||
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
|
||||
|
||||
sorry
|
||||
|
||||
use g
|
||||
constructor
|
||||
· exact StronglyMeromorphicOn.meromorphicOn h₁g
|
||||
· constructor
|
||||
· exact h₃g
|
||||
· exact AnalyticOnNhd.analyticOn h₃g
|
||||
· constructor
|
||||
· exact h₄g
|
||||
· sorry
|
||||
|
Loading…
Reference in New Issue
Block a user