diff --git a/Nevanlinna/meromorphicOn_divisor.lean b/Nevanlinna/meromorphicOn_divisor.lean index 532a372..2e7ba1b 100644 --- a/Nevanlinna/meromorphicOn_divisor.lean +++ b/Nevanlinna/meromorphicOn_divisor.lean @@ -159,3 +159,26 @@ theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn apply MeromorphicAt.order_congr exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz) · simp [hz] + + + +/- Strongly MeromorphicOn of non-negative order is analytic -/ +theorem StronglyMeromorphicOn.analyticOnNhd + {f : ℂ → ℂ} + {U : Set ℂ} + (h₁f : StronglyMeromorphicOn f U) + (h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) : + AnalyticOnNhd ℂ f U := by + + apply StronglyMeromorphicOn.analytic + intro z hz + let A := h₂f z hz + unfold MeromorphicOn.divisor at A + simp [hz] at A + by_cases h : (h₁f z hz).meromorphicAt.order = ⊤ + · rw [h] + simp + · rw [WithTop.le_untop'_iff] at A + tauto + tauto + assumption diff --git a/Nevanlinna/stronglyMeromorphicOn.lean b/Nevanlinna/stronglyMeromorphicOn.lean index 2eb2420..8ef4846 100644 --- a/Nevanlinna/stronglyMeromorphicOn.lean +++ b/Nevanlinna/stronglyMeromorphicOn.lean @@ -26,8 +26,8 @@ theorem StronglyMeromorphicOn.analytic {f : ℂ → ℂ} {U : Set ℂ} (h₁f : StronglyMeromorphicOn f U) - (h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order): - ∀ z ∈ U, AnalyticAt ℂ f z := by + (h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) : + AnalyticOnNhd ℂ f U := by intro z hz apply StronglyMeromorphicAt.analytic exact h₂f z hz diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index 54d9488..6273835 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -324,8 +324,7 @@ theorem MeromorphicOn.decompose₃ · apply AnalyticAt.analyticWithinAt rw [analyticAt_of_mul_analytic] - - sorry + sorry have h₂h : StronglyMeromorphicOn h U := by sorry @@ -383,8 +382,8 @@ theorem MeromorphicOn.decompose₃' exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by intro z hz + apply stronglyMeromorphicOn_ratlPolynomial₃order - sorry let g' := f * h₁ have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn have h₂g' : h₁g'.divisor.toFun = 0 := by @@ -394,20 +393,26 @@ theorem MeromorphicOn.decompose₃' simp let g := h₁g'.makeStronglyMeromorphicOn - have h₁g : StronglyMeromorphicOn g U := by - sorry + have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g' have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by - sorry - have h₃g : AnalyticOn ℂ g U := by - sorry + rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn] + rw [h₂g'] + have h₃g : AnalyticOnNhd ℂ g U := by + apply StronglyMeromorphicOn.analyticOnNhd + rw [h₂g] + simp + assumption have h₄g : ∀ u : U, g u ≠ 0 := by + intro u + rw [← (h₁g u.1 u.2).order_eq_zero_iff] + sorry use g constructor · exact StronglyMeromorphicOn.meromorphicOn h₁g · constructor - · exact h₃g + · exact AnalyticOnNhd.analyticOn h₃g · constructor · exact h₄g · sorry