Working…
This commit is contained in:
parent
0cc0c81508
commit
38179d24c0
|
@ -7,8 +7,7 @@ theorem harmonic_meanValue
|
|||
(ρ R : ℝ)
|
||||
(hR : 0 < R)
|
||||
(hρ : R < ρ)
|
||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
||||
:
|
||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) :
|
||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||
:= by
|
||||
|
||||
|
|
|
@ -1,12 +1,57 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
import Mathlib.MeasureTheory.Measure.Restrict
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
-- The following theorem was suggested by Gareth Ma on Zulip
|
||||
|
||||
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||||
|
||||
have int_log : IntervalIntegrable log volume 0 1 := by sorry
|
||||
|
||||
apply IntervalIntegrable.mono_fun' (g := log)
|
||||
|
||||
exact int_log
|
||||
|
||||
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||||
apply ContinuousOn.aestronglyMeasurable
|
||||
apply ContinuousOn.comp (t := Ι 0 1)
|
||||
apply ContinuousOn.mono (s := {0}ᶜ)
|
||||
exact continuousOn_log
|
||||
intro x hx
|
||||
by_contra contra
|
||||
simp at contra
|
||||
rw [contra] at hx
|
||||
rw [Set.left_mem_uIoc] at hx
|
||||
linarith
|
||||
exact continuousOn_sin
|
||||
--
|
||||
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||||
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||||
--
|
||||
exact measurableSet_uIoc
|
||||
--
|
||||
|
||||
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
|
||||
dsimp [EventuallyLE]
|
||||
rw [MeasureTheory.ae_restrict_iff]
|
||||
apply MeasureTheory.ae_of_all
|
||||
exact this
|
||||
|
||||
--intro x
|
||||
rw [MeasureTheory.ae_iff]
|
||||
simp
|
||||
|
||||
rw [MeasureTheory.ae_iff]
|
||||
simp
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
theorem logInt
|
||||
{t : ℝ}
|
||||
(ht : 0 < t) :
|
||||
|
@ -63,6 +108,11 @@ theorem logInt
|
|||
simp [Set.mem_uIcc, ht]
|
||||
|
||||
|
||||
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
lemma int₁ :
|
||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||
|
||||
|
@ -109,7 +159,4 @@ lemma int₁ :
|
|||
simp
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
exact int₁₁
|
||||
|
|
Loading…
Reference in New Issue