Working…

This commit is contained in:
Stefan Kebekus 2024-08-13 16:26:55 +02:00
parent 0cc0c81508
commit 38179d24c0
2 changed files with 52 additions and 6 deletions

View File

@ -7,8 +7,7 @@ theorem harmonic_meanValue
(ρ R : )
(hR : 0 < R)
(hρ : R < ρ)
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
:
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) :
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
:= by

View File

@ -1,12 +1,57 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.MeasureTheory.Integral.CircleIntegral
import Mathlib.MeasureTheory.Measure.Restrict
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
-- The following theorem was suggested by Gareth Ma on Zulip
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
have int_log : IntervalIntegrable log volume 0 1 := by sorry
apply IntervalIntegrable.mono_fun' (g := log)
exact int_log
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
apply ContinuousOn.aestronglyMeasurable
apply ContinuousOn.comp (t := Ι 0 1)
apply ContinuousOn.mono (s := {0}ᶜ)
exact continuousOn_log
intro x hx
by_contra contra
simp at contra
rw [contra] at hx
rw [Set.left_mem_uIoc] at hx
linarith
exact continuousOn_sin
--
rw [Set.uIoc_of_le (zero_le_one' )]
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
--
exact measurableSet_uIoc
--
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
dsimp [EventuallyLE]
rw [MeasureTheory.ae_restrict_iff]
apply MeasureTheory.ae_of_all
exact this
--intro x
rw [MeasureTheory.ae_iff]
simp
rw [MeasureTheory.ae_iff]
simp
sorry
theorem logInt
{t : }
(ht : 0 < t) :
@ -63,6 +108,11 @@ theorem logInt
simp [Set.mem_uIcc, ht]
lemma int₁₁ : ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
sorry
lemma int₁ :
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
@ -109,7 +159,4 @@ lemma int₁ :
simp
rw [this]
simp
sorry
exact int₁₁