diff --git a/Nevanlinna/harmonicAt_meanValue.lean b/Nevanlinna/harmonicAt_meanValue.lean index 6cc13cf..3d5e284 100644 --- a/Nevanlinna/harmonicAt_meanValue.lean +++ b/Nevanlinna/harmonicAt_meanValue.lean @@ -7,8 +7,7 @@ theorem harmonic_meanValue (ρ R : ℝ) (hR : 0 < R) (hρ : R < ρ) - (hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) - : + (hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) : (∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z := by diff --git a/Nevanlinna/specialFunctions_Integrals.lean b/Nevanlinna/specialFunctions_Integrals.lean index 657d37a..839e9e0 100644 --- a/Nevanlinna/specialFunctions_Integrals.lean +++ b/Nevanlinna/specialFunctions_Integrals.lean @@ -1,12 +1,57 @@ import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.MeasureTheory.Integral.CircleIntegral +import Mathlib.MeasureTheory.Measure.Restrict open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral -- The following theorem was suggested by Gareth Ma on Zulip +example : IntervalIntegrable (log ∘ sin) volume 0 1 := by + + have int_log : IntervalIntegrable log volume 0 1 := by sorry + + apply IntervalIntegrable.mono_fun' (g := log) + + exact int_log + + -- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1)) + apply ContinuousOn.aestronglyMeasurable + apply ContinuousOn.comp (t := Ι 0 1) + apply ContinuousOn.mono (s := {0}ᶜ) + exact continuousOn_log + intro x hx + by_contra contra + simp at contra + rw [contra] at hx + rw [Set.left_mem_uIoc] at hx + linarith + exact continuousOn_sin + -- + rw [Set.uIoc_of_le (zero_le_one' ℝ)] + exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩ + -- + exact measurableSet_uIoc + -- + + have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry + dsimp [EventuallyLE] + rw [MeasureTheory.ae_restrict_iff] + apply MeasureTheory.ae_of_all + exact this + + --intro x + rw [MeasureTheory.ae_iff] + simp + + rw [MeasureTheory.ae_iff] + simp + + + sorry + + theorem logInt {t : ℝ} (ht : 0 < t) : @@ -63,6 +108,11 @@ theorem logInt simp [Set.mem_uIcc, ht] +lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by + + sorry + + lemma int₁ : ∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by @@ -109,7 +159,4 @@ lemma int₁ : simp rw [this] simp - - - - sorry + exact int₁₁