163 lines
5.1 KiB
Plaintext
163 lines
5.1 KiB
Plaintext
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||
import Mathlib.MeasureTheory.Measure.Restrict
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
-- The following theorem was suggested by Gareth Ma on Zulip
|
||
|
||
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||
|
||
have int_log : IntervalIntegrable log volume 0 1 := by sorry
|
||
|
||
apply IntervalIntegrable.mono_fun' (g := log)
|
||
|
||
exact int_log
|
||
|
||
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||
apply ContinuousOn.aestronglyMeasurable
|
||
apply ContinuousOn.comp (t := Ι 0 1)
|
||
apply ContinuousOn.mono (s := {0}ᶜ)
|
||
exact continuousOn_log
|
||
intro x hx
|
||
by_contra contra
|
||
simp at contra
|
||
rw [contra] at hx
|
||
rw [Set.left_mem_uIoc] at hx
|
||
linarith
|
||
exact continuousOn_sin
|
||
--
|
||
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||
--
|
||
exact measurableSet_uIoc
|
||
--
|
||
|
||
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
|
||
dsimp [EventuallyLE]
|
||
rw [MeasureTheory.ae_restrict_iff]
|
||
apply MeasureTheory.ae_of_all
|
||
exact this
|
||
|
||
--intro x
|
||
rw [MeasureTheory.ae_iff]
|
||
simp
|
||
|
||
rw [MeasureTheory.ae_iff]
|
||
simp
|
||
|
||
|
||
sorry
|
||
|
||
|
||
theorem logInt
|
||
{t : ℝ}
|
||
(ht : 0 < t) :
|
||
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
||
rw [← integral_add_adjacent_intervals (b := 1)]
|
||
trans (-1) + (t * log t - t + 1)
|
||
· congr
|
||
· -- ∫ x in 0..1, log x = -1, same proof as before
|
||
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
||
· simp
|
||
· simp
|
||
· intro x hx
|
||
norm_num at hx
|
||
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
||
norm_num
|
||
· rw [← neg_neg log]
|
||
apply IntervalIntegrable.neg
|
||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||
· intro x hx
|
||
norm_num at hx
|
||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||
norm_num
|
||
· intro x hx
|
||
norm_num at hx
|
||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
||
simp_rw [rpow_one, mul_comm] at this
|
||
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
||
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
||
norm_num
|
||
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
||
apply tendsto_nhdsWithin_of_tendsto_nhds
|
||
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
||
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
||
rw [integral_log_of_pos zero_lt_one ht]
|
||
norm_num
|
||
· abel
|
||
· -- log is integrable on [[0, 1]]
|
||
rw [← neg_neg log]
|
||
apply IntervalIntegrable.neg
|
||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||
· intro x hx
|
||
norm_num at hx
|
||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||
norm_num
|
||
· intro x hx
|
||
norm_num at hx
|
||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||
· -- log is integrable on [[0, t]]
|
||
simp [Set.mem_uIcc, ht]
|
||
|
||
|
||
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||
|
||
sorry
|
||
|
||
|
||
lemma int₁ :
|
||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||
|
||
have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
||
dsimp [Complex.abs]
|
||
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
||
congr
|
||
calc Complex.normSq (circleMap 0 1 x - 1)
|
||
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
||
dsimp [circleMap]
|
||
rw [Complex.normSq_apply]
|
||
simp
|
||
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
|
||
ring
|
||
_ = 2 - 2 * cos x := by
|
||
rw [sin_sq_add_cos_sq]
|
||
norm_num
|
||
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
||
rw [← mul_div_assoc]
|
||
congr; norm_num
|
||
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
||
rw [cos_two_mul]
|
||
ring
|
||
_ = 4 * sin (x / 2) ^ 2 := by
|
||
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
||
ring
|
||
simp_rw [this]
|
||
simp
|
||
|
||
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
||
have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
|
||
nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
|
||
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
|
||
let f := fun y ↦ log (4 * sin y ^ 2)
|
||
have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
|
||
conv =>
|
||
left
|
||
right
|
||
right
|
||
arg 1
|
||
intro x
|
||
rw [this]
|
||
rw [intervalIntegral.inv_mul_integral_comp_div 2]
|
||
simp
|
||
rw [this]
|
||
simp
|
||
exact int₁₁
|