Working…
This commit is contained in:
parent
0cc0c81508
commit
38179d24c0
|
@ -7,8 +7,7 @@ theorem harmonic_meanValue
|
||||||
(ρ R : ℝ)
|
(ρ R : ℝ)
|
||||||
(hR : 0 < R)
|
(hR : 0 < R)
|
||||||
(hρ : R < ρ)
|
(hρ : R < ρ)
|
||||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) :
|
||||||
:
|
|
||||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||||
:= by
|
:= by
|
||||||
|
|
||||||
|
|
|
@ -1,12 +1,57 @@
|
||||||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
|
import Mathlib.MeasureTheory.Measure.Restrict
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
-- The following theorem was suggested by Gareth Ma on Zulip
|
-- The following theorem was suggested by Gareth Ma on Zulip
|
||||||
|
|
||||||
|
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||||||
|
|
||||||
|
have int_log : IntervalIntegrable log volume 0 1 := by sorry
|
||||||
|
|
||||||
|
apply IntervalIntegrable.mono_fun' (g := log)
|
||||||
|
|
||||||
|
exact int_log
|
||||||
|
|
||||||
|
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||||||
|
apply ContinuousOn.aestronglyMeasurable
|
||||||
|
apply ContinuousOn.comp (t := Ι 0 1)
|
||||||
|
apply ContinuousOn.mono (s := {0}ᶜ)
|
||||||
|
exact continuousOn_log
|
||||||
|
intro x hx
|
||||||
|
by_contra contra
|
||||||
|
simp at contra
|
||||||
|
rw [contra] at hx
|
||||||
|
rw [Set.left_mem_uIoc] at hx
|
||||||
|
linarith
|
||||||
|
exact continuousOn_sin
|
||||||
|
--
|
||||||
|
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||||||
|
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||||||
|
--
|
||||||
|
exact measurableSet_uIoc
|
||||||
|
--
|
||||||
|
|
||||||
|
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
|
||||||
|
dsimp [EventuallyLE]
|
||||||
|
rw [MeasureTheory.ae_restrict_iff]
|
||||||
|
apply MeasureTheory.ae_of_all
|
||||||
|
exact this
|
||||||
|
|
||||||
|
--intro x
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem logInt
|
theorem logInt
|
||||||
{t : ℝ}
|
{t : ℝ}
|
||||||
(ht : 0 < t) :
|
(ht : 0 < t) :
|
||||||
|
@ -63,6 +108,11 @@ theorem logInt
|
||||||
simp [Set.mem_uIcc, ht]
|
simp [Set.mem_uIcc, ht]
|
||||||
|
|
||||||
|
|
||||||
|
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
lemma int₁ :
|
lemma int₁ :
|
||||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
|
||||||
|
@ -109,7 +159,4 @@ lemma int₁ :
|
||||||
simp
|
simp
|
||||||
rw [this]
|
rw [this]
|
||||||
simp
|
simp
|
||||||
|
exact int₁₁
|
||||||
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
Loading…
Reference in New Issue