This commit is contained in:
Stefan Kebekus 2024-11-28 18:24:08 +01:00
parent 8bc84748a3
commit 2b7ab1af9d

View File

@ -63,6 +63,13 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
apply analyticOnNhd_const apply analyticOnNhd_const
theorem stronglyMeromorphicOn_ratlPolynomial₃U
(d : )
(U : Set ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
intro z hz
exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial)
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
{z : } {z : }
@ -166,7 +173,10 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃order
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
exact hd exact hd
simp_rw [finprod_of_infinite_mulSupport this] simp_rw [finprod_of_infinite_mulSupport this]
sorry have : AnalyticAt (1 : ) z := by exact analyticAt_const
rw [AnalyticAt.meromorphicAt_order this]
rw [this.order_eq_zero_iff.2 (by simp)]
simp
theorem stronglyMeromorphicOn_divisor_ratlPolynomial theorem stronglyMeromorphicOn_divisor_ratlPolynomial