Working.
This commit is contained in:
		| @@ -107,7 +107,7 @@ A harmonic, real-valued function on ℂ is the real part of a suitable holomorph | ||||
| theorem harmonic_is_realOfHolomorphic | ||||
|   {f : ℂ → ℝ} | ||||
|   (hf : ∀ z, HarmonicAt f z) : | ||||
|   ∃ F : ℂ → ℂ, ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by | ||||
|   ∃ F : ℂ → ℂ, ∀ z, HolomorphicAt F z ∧ (Complex.reCLM ∘ F = f) := by | ||||
|  | ||||
|   let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f) | ||||
|   let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f) | ||||
| @@ -195,6 +195,12 @@ theorem harmonic_is_realOfHolomorphic | ||||
|       exact reg₁f_I.differentiable le_rfl | ||||
|    | ||||
|   let F := primitive 0 g | ||||
|  | ||||
|   have pF : ∀ x a, (fderiv ℝ F x) a = (g x) * a := by  | ||||
|     sorry | ||||
|  | ||||
|   have regF : Differentiable ℂ F := by sorry | ||||
|  | ||||
|   use F | ||||
|   intro z | ||||
|   constructor | ||||
| @@ -209,5 +215,29 @@ theorem harmonic_is_realOfHolomorphic | ||||
|         let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁ | ||||
|         apply A.differentiableAt | ||||
|   · -- (F z).re = f z | ||||
|      | ||||
|     sorry | ||||
|     have A := reg₂f.differentiable one_le_two | ||||
|     have B : Differentiable ℝ (Complex.reCLM ∘ F) := by  | ||||
|       apply Differentiable.comp | ||||
|       exact ContinuousLinearMap.differentiable Complex.reCLM | ||||
|       exact Differentiable.restrictScalars ℝ regF | ||||
|     have C : (F 0).re = f 0 := by sorry | ||||
|     apply eq_of_fderiv_eq B A _ 0 C | ||||
|     intro x | ||||
|     rw [fderiv.comp] | ||||
|     simp | ||||
|     apply ContinuousLinearMap.ext | ||||
|     intro w | ||||
|     simp | ||||
|     rw [pF] | ||||
|     dsimp [g, f_1, f_I, partialDeriv] | ||||
|     simp | ||||
|     have : w = w.re • 1 + w.im • Complex.I := by simp | ||||
|     nth_rw 3 [this] | ||||
|     rw [(fderiv ℝ f x).map_add] | ||||
|     rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul] | ||||
|     rw [smul_eq_mul, smul_eq_mul] | ||||
|     ring | ||||
|     -- DifferentiableAt ℝ (⇑Complex.reCLM) (F x) | ||||
|     exact ContinuousLinearMap.differentiableAt Complex.reCLM | ||||
|     -- DifferentiableAt ℝ F x | ||||
|     exact regF.restrictScalars ℝ x | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus