From 1d27eeb66b97951d4d78640047fe087bf51919b3 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Tue, 30 Jul 2024 14:11:39 +0200 Subject: [PATCH] Working. --- Nevanlinna/holomorphic_examples.lean | 36 +++++++++++++++++++++++++--- 1 file changed, 33 insertions(+), 3 deletions(-) diff --git a/Nevanlinna/holomorphic_examples.lean b/Nevanlinna/holomorphic_examples.lean index f4062d2..cdf69a5 100644 --- a/Nevanlinna/holomorphic_examples.lean +++ b/Nevanlinna/holomorphic_examples.lean @@ -107,7 +107,7 @@ A harmonic, real-valued function on ℂ is the real part of a suitable holomorph theorem harmonic_is_realOfHolomorphic {f : ℂ → ℝ} (hf : ∀ z, HarmonicAt f z) : - ∃ F : ℂ → ℂ, ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by + ∃ F : ℂ → ℂ, ∀ z, HolomorphicAt F z ∧ (Complex.reCLM ∘ F = f) := by let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f) let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f) @@ -195,6 +195,12 @@ theorem harmonic_is_realOfHolomorphic exact reg₁f_I.differentiable le_rfl let F := primitive 0 g + + have pF : ∀ x a, (fderiv ℝ F x) a = (g x) * a := by + sorry + + have regF : Differentiable ℂ F := by sorry + use F intro z constructor @@ -209,5 +215,29 @@ theorem harmonic_is_realOfHolomorphic let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁ apply A.differentiableAt · -- (F z).re = f z - - sorry + have A := reg₂f.differentiable one_le_two + have B : Differentiable ℝ (Complex.reCLM ∘ F) := by + apply Differentiable.comp + exact ContinuousLinearMap.differentiable Complex.reCLM + exact Differentiable.restrictScalars ℝ regF + have C : (F 0).re = f 0 := by sorry + apply eq_of_fderiv_eq B A _ 0 C + intro x + rw [fderiv.comp] + simp + apply ContinuousLinearMap.ext + intro w + simp + rw [pF] + dsimp [g, f_1, f_I, partialDeriv] + simp + have : w = w.re • 1 + w.im • Complex.I := by simp + nth_rw 3 [this] + rw [(fderiv ℝ f x).map_add] + rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul] + rw [smul_eq_mul, smul_eq_mul] + ring + -- DifferentiableAt ℝ (⇑Complex.reCLM) (F x) + exact ContinuousLinearMap.differentiableAt Complex.reCLM + -- DifferentiableAt ℝ F x + exact regF.restrictScalars ℝ x