This commit is contained in:
Stefan Kebekus 2024-07-30 14:11:39 +02:00
parent d4de5d8b5a
commit 1d27eeb66b
1 changed files with 33 additions and 3 deletions

View File

@ -107,7 +107,7 @@ A harmonic, real-valued function on is the real part of a suitable holomorph
theorem harmonic_is_realOfHolomorphic
{f : }
(hf : ∀ z, HarmonicAt f z) :
∃ F : , ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by
∃ F : , ∀ z, HolomorphicAt F z ∧ (Complex.reCLM ∘ F = f) := by
let f_1 : := Complex.ofRealCLM ∘ (partialDeriv 1 f)
let f_I : := Complex.ofRealCLM ∘ (partialDeriv Complex.I f)
@ -195,6 +195,12 @@ theorem harmonic_is_realOfHolomorphic
exact reg₁f_I.differentiable le_rfl
let F := primitive 0 g
have pF : ∀ x a, (fderiv F x) a = (g x) * a := by
sorry
have regF : Differentiable F := by sorry
use F
intro z
constructor
@ -209,5 +215,29 @@ theorem harmonic_is_realOfHolomorphic
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
apply A.differentiableAt
· -- (F z).re = f z
sorry
have A := reg₂f.differentiable one_le_two
have B : Differentiable (Complex.reCLM ∘ F) := by
apply Differentiable.comp
exact ContinuousLinearMap.differentiable Complex.reCLM
exact Differentiable.restrictScalars regF
have C : (F 0).re = f 0 := by sorry
apply eq_of_fderiv_eq B A _ 0 C
intro x
rw [fderiv.comp]
simp
apply ContinuousLinearMap.ext
intro w
simp
rw [pF]
dsimp [g, f_1, f_I, partialDeriv]
simp
have : w = w.re • 1 + w.im • Complex.I := by simp
nth_rw 3 [this]
rw [(fderiv f x).map_add]
rw [(fderiv f x).map_smul, (fderiv f x).map_smul]
rw [smul_eq_mul, smul_eq_mul]
ring
-- DifferentiableAt (⇑Complex.reCLM) (F x)
exact ContinuousLinearMap.differentiableAt Complex.reCLM
-- DifferentiableAt F x
exact regF.restrictScalars x