Working.
This commit is contained in:
parent
d4de5d8b5a
commit
1d27eeb66b
|
@ -107,7 +107,7 @@ A harmonic, real-valued function on ℂ is the real part of a suitable holomorph
|
||||||
theorem harmonic_is_realOfHolomorphic
|
theorem harmonic_is_realOfHolomorphic
|
||||||
{f : ℂ → ℝ}
|
{f : ℂ → ℝ}
|
||||||
(hf : ∀ z, HarmonicAt f z) :
|
(hf : ∀ z, HarmonicAt f z) :
|
||||||
∃ F : ℂ → ℂ, ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by
|
∃ F : ℂ → ℂ, ∀ z, HolomorphicAt F z ∧ (Complex.reCLM ∘ F = f) := by
|
||||||
|
|
||||||
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
||||||
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
||||||
|
@ -195,6 +195,12 @@ theorem harmonic_is_realOfHolomorphic
|
||||||
exact reg₁f_I.differentiable le_rfl
|
exact reg₁f_I.differentiable le_rfl
|
||||||
|
|
||||||
let F := primitive 0 g
|
let F := primitive 0 g
|
||||||
|
|
||||||
|
have pF : ∀ x a, (fderiv ℝ F x) a = (g x) * a := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have regF : Differentiable ℂ F := by sorry
|
||||||
|
|
||||||
use F
|
use F
|
||||||
intro z
|
intro z
|
||||||
constructor
|
constructor
|
||||||
|
@ -209,5 +215,29 @@ theorem harmonic_is_realOfHolomorphic
|
||||||
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
|
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
|
||||||
apply A.differentiableAt
|
apply A.differentiableAt
|
||||||
· -- (F z).re = f z
|
· -- (F z).re = f z
|
||||||
|
have A := reg₂f.differentiable one_le_two
|
||||||
sorry
|
have B : Differentiable ℝ (Complex.reCLM ∘ F) := by
|
||||||
|
apply Differentiable.comp
|
||||||
|
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||||
|
exact Differentiable.restrictScalars ℝ regF
|
||||||
|
have C : (F 0).re = f 0 := by sorry
|
||||||
|
apply eq_of_fderiv_eq B A _ 0 C
|
||||||
|
intro x
|
||||||
|
rw [fderiv.comp]
|
||||||
|
simp
|
||||||
|
apply ContinuousLinearMap.ext
|
||||||
|
intro w
|
||||||
|
simp
|
||||||
|
rw [pF]
|
||||||
|
dsimp [g, f_1, f_I, partialDeriv]
|
||||||
|
simp
|
||||||
|
have : w = w.re • 1 + w.im • Complex.I := by simp
|
||||||
|
nth_rw 3 [this]
|
||||||
|
rw [(fderiv ℝ f x).map_add]
|
||||||
|
rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul]
|
||||||
|
rw [smul_eq_mul, smul_eq_mul]
|
||||||
|
ring
|
||||||
|
-- DifferentiableAt ℝ (⇑Complex.reCLM) (F x)
|
||||||
|
exact ContinuousLinearMap.differentiableAt Complex.reCLM
|
||||||
|
-- DifferentiableAt ℝ F x
|
||||||
|
exact regF.restrictScalars ℝ x
|
||||||
|
|
Loading…
Reference in New Issue