Update complexHarmonic.lean
This commit is contained in:
parent
710de9372b
commit
077bace964
|
@ -162,9 +162,6 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
||||
exact ContDiff.contDiffAt f_is_real_C2
|
||||
|
||||
|
||||
|
||||
|
||||
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
|
@ -172,9 +169,6 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
|
||||
|
||||
|
||||
|
||||
constructor
|
||||
· -- logabs f is real C²
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
|
@ -188,14 +182,10 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
rw [this]
|
||||
|
||||
have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||
simp
|
||||
exact rfl
|
||||
rw [this]
|
||||
|
||||
apply contDiff_iff_contDiffAt.2
|
||||
intro z
|
||||
apply ContDiffAt.const_smul
|
||||
exact ContDiff.contDiffAt t₄
|
||||
apply ContDiff.const_smul
|
||||
exact t₄
|
||||
|
||||
· -- Laplace vanishes
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
|
|
Loading…
Reference in New Issue