Update complexHarmonic.lean
This commit is contained in:
		@@ -162,9 +162,6 @@ theorem logabs_of_holomorphic_is_harmonic
 | 
			
		||||
    apply ContDiff.comp_contDiffAt z normSq_is_real_C2
 | 
			
		||||
    exact ContDiff.contDiffAt f_is_real_C2
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
 | 
			
		||||
    funext z
 | 
			
		||||
    unfold Function.comp
 | 
			
		||||
@@ -172,9 +169,6 @@ theorem logabs_of_holomorphic_is_harmonic
 | 
			
		||||
    rfl
 | 
			
		||||
    exact Complex.slitPlane_arg_ne_pi (h₃ z)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  constructor
 | 
			
		||||
  · -- logabs f is real C²
 | 
			
		||||
    have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
 | 
			
		||||
@@ -188,14 +182,10 @@ theorem logabs_of_holomorphic_is_harmonic
 | 
			
		||||
    rw [this]
 | 
			
		||||
 | 
			
		||||
    have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
 | 
			
		||||
      simp
 | 
			
		||||
      exact rfl
 | 
			
		||||
    rw [this]
 | 
			
		||||
 | 
			
		||||
    apply contDiff_iff_contDiffAt.2
 | 
			
		||||
    intro z
 | 
			
		||||
    apply ContDiffAt.const_smul
 | 
			
		||||
    exact ContDiff.contDiffAt t₄
 | 
			
		||||
    apply ContDiff.const_smul
 | 
			
		||||
    exact t₄
 | 
			
		||||
 | 
			
		||||
  · -- Laplace vanishes
 | 
			
		||||
    have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user