nevanlinna/Nevanlinna/meromorphicOn_divisor.lean

185 lines
5.2 KiB
Plaintext
Raw Normal View History

2024-10-31 17:09:09 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
2024-11-07 09:53:34 +01:00
import Nevanlinna.meromorphicAt
2024-11-26 20:04:58 +01:00
import Nevanlinna.stronglyMeromorphicOn
2024-10-31 17:09:09 +01:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def MeromorphicOn.divisor
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.untop' 0 : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
2024-11-04 13:22:12 +01:00
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhdsWithin_iff] at h
rw [eventually_nhds_iff] at h
2024-10-31 17:09:09 +01:00
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
2024-11-04 13:22:12 +01:00
· intro y h₁y h₂y
2024-10-31 17:09:09 +01:00
by_cases h₃y : y ∈ U
· simp [h₃y]
right
2024-11-04 13:22:12 +01:00
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhdsWithin_iff]
2024-10-31 17:09:09 +01:00
rw [eventually_nhds_iff]
2024-11-04 13:22:12 +01:00
use N ∩ {z}ᶜ
constructor
· intro x h₁x _
exact h₁N x h₁x.1 h₁x.2
· constructor
· exact IsOpen.inter h₂N isOpen_compl_singleton
· exact Set.mem_inter h₁y h₂y
2024-10-31 17:09:09 +01:00
· simp [h₃y]
· tauto
2024-11-04 13:22:12 +01:00
· let A := (hf z hz).eventually_analyticAt
let B := Filter.eventually_and.2 ⟨h, A⟩
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
2024-10-31 17:09:09 +01:00
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
2024-11-04 13:22:12 +01:00
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
let C := (h₁N y h₁y h₂y).1
let E := D C
rw [E]
simp
2024-10-31 17:09:09 +01:00
· simp [h₃y]
· tauto
2024-11-19 10:07:20 +01:00
theorem MeromorphicOn.divisor_def₁
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U) :
hf.divisor z = ((hf z hz).order.untop' 0 : ) := by
unfold MeromorphicOn.divisor
simp [hz]
theorem MeromorphicOn.divisor_def₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U)
(h₂f : (hf z hz).order ≠ ) :
hf.divisor z = (hf z hz).order.untop h₂f := by
unfold MeromorphicOn.divisor
simp [hz]
rw [WithTop.untop'_eq_iff]
left
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
2024-11-20 08:12:12 +01:00
2024-11-20 11:43:09 +01:00
theorem MeromorphicOn.divisor_mul₀
{f₁ f₂ : }
{U : Set }
{z : }
(hz : z ∈ U)
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
by_cases h₁z : z ∈ U
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ := by
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
simp; tauto
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
rw [untop_add]
· unfold MeromorphicOn.divisor
simp [h₁z]
2024-11-20 08:12:12 +01:00
theorem MeromorphicOn.divisor_mul
{f₁ f₂ : }
{U : Set }
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
funext z
by_cases hz : z ∈ U
2024-11-20 11:43:09 +01:00
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
simp
· simp
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
simp
2024-11-26 20:04:58 +01:00
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
hf.divisor = (stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf).meromorphicOn.divisor := by
unfold MeromorphicOn.divisor
simp
funext z
by_cases hz : z ∈ U
· simp [hz]
congr 1
apply MeromorphicAt.order_congr
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
· simp [hz]
2024-11-28 18:57:43 +01:00
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analyticOnNhd
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
AnalyticOnNhd f U := by
apply StronglyMeromorphicOn.analytic
intro z hz
let A := h₂f z hz
unfold MeromorphicOn.divisor at A
simp [hz] at A
by_cases h : (h₁f z hz).meromorphicAt.order =
· rw [h]
simp
· rw [WithTop.le_untop'_iff] at A
tauto
tauto
assumption