nevanlinna/Nevanlinna/meromorphicOn_integrability.lean

171 lines
5.9 KiB
Plaintext
Raw Normal View History

2024-12-11 12:36:44 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
2024-12-13 16:03:00 +01:00
import Mathlib.MeasureTheory.Integral.CircleIntegral
import Mathlib.MeasureTheory.Integral.IntervalIntegral
2024-12-11 12:36:44 +01:00
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
2024-12-16 17:17:43 +01:00
import Nevanlinna.stronglyMeromorphicOn_eliminate
2024-12-11 12:36:44 +01:00
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-12-16 07:36:01 +01:00
/- Integral and Integrability up to changes on codiscrete sets -/
2024-12-13 12:26:05 +01:00
theorem d
{U S : Set }
2024-12-13 16:03:00 +01:00
{c : }
2024-12-13 12:26:05 +01:00
{r : }
2024-12-13 16:03:00 +01:00
(hr : r ≠ 0)
(hU : Metric.sphere c |r| ⊆ U)
2024-12-13 12:26:05 +01:00
(hS : S ∈ Filter.codiscreteWithin U) :
2024-12-13 16:03:00 +01:00
Countable ((circleMap c r)⁻¹' Sᶜ) := by
2024-12-13 12:26:05 +01:00
2024-12-13 16:03:00 +01:00
have : (circleMap c r)⁻¹' (S Uᶜ)ᶜ = (circleMap c r)⁻¹' Sᶜ := by
simp [(by simpa : (circleMap c r)⁻¹' U = )]
rw [← this]
2024-12-13 12:26:05 +01:00
2024-12-13 16:03:00 +01:00
apply Set.Countable.preimage_circleMap _ c hr
have : DiscreteTopology ((S Uᶜ)ᶜ : Set ) := by
rw [discreteTopology_subtype_iff]
rw [mem_codiscreteWithin] at hS; simp at hS
2024-12-13 12:26:05 +01:00
2024-12-13 16:03:00 +01:00
intro x hx
rw [← mem_iff_inf_principal_compl, (by ext z; simp; tauto : S Uᶜ = (U \ S)ᶜ)]
rw [Set.compl_union, compl_compl] at hx
exact hS x hx.2
2024-12-13 12:26:05 +01:00
2024-12-13 16:03:00 +01:00
apply TopologicalSpace.separableSpace_iff_countable.1
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
2024-12-13 12:26:05 +01:00
theorem integrability_congr_changeDiscrete₀
2024-12-16 17:17:43 +01:00
{f₁ f₂ : }
2024-12-13 07:58:40 +01:00
{U : Set }
2024-12-11 12:36:44 +01:00
{r : }
2024-12-13 12:26:05 +01:00
(hU : Metric.sphere 0 |r| ⊆ U)
2024-12-13 07:58:40 +01:00
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
2024-12-11 12:36:44 +01:00
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁
2024-12-13 12:26:05 +01:00
by_cases hr : r = 0
· unfold circleMap
rw [hr]
simp
have : f₂ ∘ (fun (θ : ) ↦ 0) = (fun r ↦ f₂ 0) := by
2024-12-11 12:36:44 +01:00
exact rfl
rw [this]
2024-12-13 07:58:40 +01:00
simp
2024-12-13 12:26:05 +01:00
· apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem]
2024-12-13 16:03:00 +01:00
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
2024-12-13 12:26:05 +01:00
constructor
2024-12-13 16:03:00 +01:00
· apply Set.Countable.measure_zero (d hr hU hf)
· tauto
2024-12-13 12:26:05 +01:00
theorem integrability_congr_changeDiscrete
2024-12-16 17:17:43 +01:00
{f₁ f₂ : }
2024-12-13 12:26:05 +01:00
{U : Set }
{r : }
2024-12-16 17:17:43 +01:00
(hU : Metric.sphere (0 : ) |r| ⊆ U)
2024-12-13 12:26:05 +01:00
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) ↔ IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
constructor
· exact integrability_congr_changeDiscrete₀ hU hf
· exact integrability_congr_changeDiscrete₀ hU (EventuallyEq.symm hf)
theorem integral_congr_changeDiscrete
2024-12-16 17:17:43 +01:00
{f₁ f₂ : }
2024-12-13 12:26:05 +01:00
{U : Set }
{r : }
2024-12-13 16:03:00 +01:00
(hr : r ≠ 0)
2024-12-13 12:26:05 +01:00
(hU : Metric.sphere 0 |r| ⊆ U)
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
∫ (x : ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by
apply intervalIntegral.integral_congr_ae
rw [eventually_iff_exists_mem]
2024-12-13 16:03:00 +01:00
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero (d hr hU hf)
· tauto
2024-12-16 17:17:43 +01:00
theorem MeromorphicOn.integrable_log_abs_f
{f : }
{r : }
(hr : 0 < r)
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ) r))
(h₂f : ∃ u : (Metric.closedBall (0 : ) r), (h₁f u u.2).order ≠ ) :
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
have h₁U : IsCompact (Metric.closedBall (0 : ) r) := isCompact_closedBall 0 r
have h₂U : IsConnected (Metric.closedBall (0 : ) r) := by
constructor
· exact Metric.nonempty_closedBall.mpr (le_of_lt hr)
· exact (convex_closedBall (0 : ) r).isPreconnected
have h₃U : interior (Metric.closedBall (0 : ) r) ≠ ∅ := by
rw [interior_closedBall, ← Set.nonempty_iff_ne_empty]
use 0; simp [hr];
repeat exact Ne.symm (ne_of_lt hr)
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
exact Divisor.finiteSupport h₁U h₁f.divisor
2024-12-16 17:17:43 +01:00
obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f
have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by
rfl
rw [this]
have : Metric.sphere (0 : ) |r| ⊆ Metric.closedBall (0 : ) r := by
rw [abs_of_pos hr]
apply Metric.sphere_subset_closedBall
2024-12-16 17:17:43 +01:00
rw [integrability_congr_changeDiscrete this h₃g]
apply IntervalIntegrable.add
--
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log ‖g (circleMap 0 r x)‖) = log ∘ Complex.abs ∘ g ∘ (fun x ↦ circleMap 0 r x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
· simp
have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ) r) := by
apply circleMap_mem_closedBall
exact le_of_lt hr
exact h₂g ⟨(circleMap 0 r x), this⟩
apply ContinuousAt.comp
· apply Continuous.continuousAt Complex.continuous_abs
apply ContinuousAt.comp
· have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ) r) := by
apply circleMap_mem_closedBall (0 : ) (le_of_lt hr) x
apply (h₁g (circleMap 0 r x) this).continuousAt
apply Continuous.continuousAt (continuous_circleMap 0 r)
--
have h {x : } : (Function.support fun s => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) ⊆ h₃f.toFinset := by
intro x; simp; tauto
simp_rw [finsum_eq_sum_of_support_subset _ h]
--let A := IntervalIntegrable.sum h₃f.toFinset
--have h : ∀ s ∈ h₃f.toFinset, IntervalIntegrable (f i) volume 0 (2 * π) := by
-- sorry
have : (fun x => ∑ s ∈ h₃f.toFinset, (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) = (∑ s ∈ h₃f.toFinset, fun x => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) := by
ext x; simp
rw [this]
apply IntervalIntegrable.sum h₃f.toFinset
intro s hs
apply IntervalIntegrable.const_mul
2024-12-16 17:17:43 +01:00
sorry