nevanlinna/Nevanlinna/meromorphicOn_integrability.lean

51 lines
1.4 KiB
Plaintext
Raw Normal View History

2024-12-11 12:36:44 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
import Mathlib.MeasureTheory.Integral.CircleIntegral
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-12-12 13:49:33 +01:00
lemma a
(S : Set )
(hS : S ∈ Filter.codiscreteWithin ) :
DiscreteTopology (Sᶜ : Set ) := by
rw [mem_codiscreteWithin] at hS
simp at hS
have : (Set.univ \ S)ᶜ = S := by ext z; simp
rw [this] at hS
rw [discreteTopology_subtype_iff]
intro x hx
rw [← mem_iff_inf_principal_compl]
exact (hS x)
2024-12-11 12:36:44 +01:00
theorem integrability_congr_changeDiscrete
{f₁ f₂ : }
{r : }
(hf : f₁ =ᶠ[Filter.codiscreteWithin ] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁
apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem]
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
exact rfl
rw [this]
apply Set.Countable.preimage_circleMap
2024-12-12 13:49:33 +01:00
2024-12-11 12:36:44 +01:00
sorry
sorry
· sorry