2024-12-11 12:36:44 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
import Nevanlinna.meromorphicAt
|
|
|
|
|
import Nevanlinna.meromorphicOn_divisor
|
|
|
|
|
import Nevanlinna.stronglyMeromorphicOn
|
|
|
|
|
import Nevanlinna.mathlibAddOn
|
|
|
|
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
|
|
|
|
|
2024-12-12 13:49:33 +01:00
|
|
|
|
lemma a
|
|
|
|
|
(S : Set ℂ)
|
|
|
|
|
(hS : S ∈ Filter.codiscreteWithin ⊤) :
|
|
|
|
|
DiscreteTopology (Sᶜ : Set ℂ) := by
|
|
|
|
|
|
|
|
|
|
rw [mem_codiscreteWithin] at hS
|
|
|
|
|
simp at hS
|
|
|
|
|
have : (Set.univ \ S)ᶜ = S := by ext z; simp
|
|
|
|
|
rw [this] at hS
|
|
|
|
|
|
|
|
|
|
rw [discreteTopology_subtype_iff]
|
|
|
|
|
intro x hx
|
|
|
|
|
rw [← mem_iff_inf_principal_compl]
|
|
|
|
|
exact (hS x)
|
|
|
|
|
|
|
|
|
|
|
2024-12-11 12:36:44 +01:00
|
|
|
|
theorem integrability_congr_changeDiscrete
|
|
|
|
|
{f₁ f₂ : ℂ → ℂ}
|
|
|
|
|
{r : ℝ}
|
|
|
|
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
|
|
|
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
|
|
|
|
intro hf₁
|
|
|
|
|
|
|
|
|
|
apply IntervalIntegrable.congr hf₁
|
|
|
|
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
|
|
|
|
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
|
|
|
|
constructor
|
|
|
|
|
· apply Set.Countable.measure_zero
|
|
|
|
|
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
|
|
|
|
exact rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
apply Set.Countable.preimage_circleMap
|
2024-12-12 13:49:33 +01:00
|
|
|
|
|
2024-12-11 12:36:44 +01:00
|
|
|
|
sorry
|
|
|
|
|
sorry
|
|
|
|
|
· sorry
|