nevanlinna/Nevanlinna/meromorphicOn_integrability.lean
Stefan Kebekus 1d1ae779cc Working
2024-12-12 13:49:33 +01:00

51 lines
1.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
import Mathlib.MeasureTheory.Integral.CircleIntegral
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
lemma a
(S : Set )
(hS : S ∈ Filter.codiscreteWithin ) :
DiscreteTopology (Sᶜ : Set ) := by
rw [mem_codiscreteWithin] at hS
simp at hS
have : (Set.univ \ S)ᶜ = S := by ext z; simp
rw [this] at hS
rw [discreteTopology_subtype_iff]
intro x hx
rw [← mem_iff_inf_principal_compl]
exact (hS x)
theorem integrability_congr_changeDiscrete
{f₁ f₂ : }
{r : }
(hf : f₁ =ᶠ[Filter.codiscreteWithin ] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁
apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem]
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
exact rfl
rw [this]
apply Set.Countable.preimage_circleMap
sorry
sorry
· sorry