51 lines
1.4 KiB
Plaintext
51 lines
1.4 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.mathlibAddOn
|
||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
lemma a
|
||
(S : Set ℂ)
|
||
(hS : S ∈ Filter.codiscreteWithin ⊤) :
|
||
DiscreteTopology (Sᶜ : Set ℂ) := by
|
||
|
||
rw [mem_codiscreteWithin] at hS
|
||
simp at hS
|
||
have : (Set.univ \ S)ᶜ = S := by ext z; simp
|
||
rw [this] at hS
|
||
|
||
rw [discreteTopology_subtype_iff]
|
||
intro x hx
|
||
rw [← mem_iff_inf_principal_compl]
|
||
exact (hS x)
|
||
|
||
|
||
theorem integrability_congr_changeDiscrete
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{r : ℝ}
|
||
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
||
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||
intro hf₁
|
||
|
||
apply IntervalIntegrable.congr hf₁
|
||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
||
constructor
|
||
· apply Set.Countable.measure_zero
|
||
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
||
exact rfl
|
||
rw [this]
|
||
apply Set.Countable.preimage_circleMap
|
||
|
||
sorry
|
||
sorry
|
||
· sorry
|