nevanlinna/Nevanlinna/meromorphicOn_divisor.lean

395 lines
11 KiB
Plaintext
Raw Normal View History

2024-10-31 17:09:09 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
2024-11-07 09:53:34 +01:00
import Nevanlinna.meromorphicAt
2024-12-16 12:43:00 +01:00
import Nevanlinna.meromorphicOn
2024-11-26 20:04:58 +01:00
import Nevanlinna.stronglyMeromorphicOn
2024-10-31 17:09:09 +01:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def MeromorphicOn.divisor
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.untop' 0 : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
2024-11-04 13:22:12 +01:00
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhdsWithin_iff] at h
rw [eventually_nhds_iff] at h
2024-10-31 17:09:09 +01:00
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
2024-11-04 13:22:12 +01:00
· intro y h₁y h₂y
2024-10-31 17:09:09 +01:00
by_cases h₃y : y ∈ U
· simp [h₃y]
right
2024-11-04 13:22:12 +01:00
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhdsWithin_iff]
2024-10-31 17:09:09 +01:00
rw [eventually_nhds_iff]
2024-11-04 13:22:12 +01:00
use N ∩ {z}ᶜ
constructor
· intro x h₁x _
exact h₁N x h₁x.1 h₁x.2
· constructor
· exact IsOpen.inter h₂N isOpen_compl_singleton
· exact Set.mem_inter h₁y h₂y
2024-10-31 17:09:09 +01:00
· simp [h₃y]
· tauto
2024-11-04 13:22:12 +01:00
· let A := (hf z hz).eventually_analyticAt
let B := Filter.eventually_and.2 ⟨h, A⟩
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
2024-10-31 17:09:09 +01:00
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
2024-11-04 13:22:12 +01:00
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
let C := (h₁N y h₁y h₂y).1
let E := D C
rw [E]
simp
2024-10-31 17:09:09 +01:00
· simp [h₃y]
· tauto
2024-11-19 10:07:20 +01:00
theorem MeromorphicOn.divisor_def₁
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U) :
hf.divisor z = ((hf z hz).order.untop' 0 : ) := by
unfold MeromorphicOn.divisor
simp [hz]
theorem MeromorphicOn.divisor_def₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U)
(h₂f : (hf z hz).order ≠ ) :
hf.divisor z = (hf z hz).order.untop h₂f := by
unfold MeromorphicOn.divisor
simp [hz]
rw [WithTop.untop'_eq_iff]
left
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
2024-11-20 08:12:12 +01:00
2024-11-20 11:43:09 +01:00
theorem MeromorphicOn.divisor_mul₀
{f₁ f₂ : }
{U : Set }
{z : }
(hz : z ∈ U)
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
by_cases h₁z : z ∈ U
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ := by
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
simp; tauto
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
rw [untop_add]
· unfold MeromorphicOn.divisor
simp [h₁z]
2024-11-20 08:12:12 +01:00
theorem MeromorphicOn.divisor_mul
{f₁ f₂ : }
{U : Set }
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
funext z
by_cases hz : z ∈ U
2024-11-20 11:43:09 +01:00
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
simp
· simp
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
simp
2024-11-26 20:04:58 +01:00
2024-12-20 08:16:22 +01:00
theorem MeromorphicOn.divisor_inv
{f: }
{U : Set }
(h₁f : MeromorphicOn f U) :
h₁f.inv.divisor.toFun = -h₁f.divisor.toFun := by
funext z
by_cases hz : z ∈ U
· rw [MeromorphicOn.divisor_def₁]
simp
rw [MeromorphicOn.divisor_def₁]
rw [MeromorphicAt.order_inv]
simp
by_cases h₂f : (h₁f z hz).order =
· simp [h₂f]
· let A := untop'_of_ne_top (d := 0) h₂f
rw [← A]
exact rfl
repeat exact hz
· unfold MeromorphicOn.divisor
simp [hz]
2025-01-03 10:38:06 +01:00
theorem MeromorphicOn.divisor_add_const₁
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(a : ) :
0 ≤ hf.divisor z → 0 ≤ (hf.add (MeromorphicOn.const a)).divisor z := by
intro h
unfold MeromorphicOn.divisor
-- Trivial case: z ∉ U
by_cases hz : z ∉ U
· simp [hz]
-- Non-trivial case: z ∈ U
simp at hz; simp [hz]
by_cases h₁f : (hf z hz).order =
· have : f + (fun z ↦ a) =ᶠ[𝓝[≠] z] (fun z ↦ a) := by
rw [MeromorphicAt.order_eq_top_iff] at h₁f
rw [eventually_nhdsWithin_iff] at h₁f
rw [eventually_nhds_iff] at h₁f
obtain ⟨t, ht⟩ := h₁f
rw [eventuallyEq_nhdsWithin_iff]
rw [eventually_nhds_iff]
use t
simp [ht]
tauto
rw [((hf z hz).add (MeromorphicAt.const a z)).order_congr this]
by_cases ha: (MeromorphicAt.const a z).order =
· simp [ha]
· rw [WithTop.le_untop'_iff]
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
tauto
· rw [WithTop.le_untop'_iff]
let A := (hf z hz).order_add (MeromorphicAt.const a z)
have : 0 ≤ min (hf z hz).order (MeromorphicAt.const a z).order := by
apply le_min
--
unfold MeromorphicOn.divisor at h
simp [hz] at h
let V := untop'_of_ne_top (d := 0) h₁f
rw [← V]
simp [h]
--
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
exact le_trans this A
tauto
2025-01-03 11:09:51 +01:00
theorem MeromorphicOn.divisor_add_const₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(a : ) :
hf.divisor z < 0 → (hf.add (MeromorphicOn.const a)).divisor z < 0 := by
intro h
by_cases hz : z ∉ U
· have : hf.divisor z = 0 := by
unfold MeromorphicOn.divisor
simp [hz]
rw [this] at h
tauto
simp at hz
unfold MeromorphicOn.divisor
simp [hz]
unfold MeromorphicOn.divisor at h
simp [hz] at h
have : (hf z hz).order = (((hf.add (MeromorphicOn.const a))) z hz).order := by
have t₀ : (hf z hz).order < (0 : ) := by
by_contra hCon
simp only [not_lt] at hCon
rw [←WithTop.le_untop'_iff (b := 0)] at hCon
exact Lean.Omega.Int.le_lt_asymm hCon h
tauto
rw [← MeromorphicAt.order_add_of_ne_orders (hf z hz) (MeromorphicAt.const a z)]
simp
by_cases ha: (MeromorphicAt.const a z).order =
· simp [ha]
· calc (hf z hz).order
_ ≤ 0 := by exact le_of_lt t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
apply ne_of_lt
calc (hf z hz).order
_ < 0 := by exact t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
rwa [this] at h
2025-01-03 11:32:28 +01:00
theorem MeromorphicOn.divisor_add_const₃
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(a : ) :
hf.divisor z < 0 → (hf.add (MeromorphicOn.const a)).divisor z = hf.divisor z := by
intro h
by_cases hz : z ∉ U
· have : hf.divisor z = 0 := by
unfold MeromorphicOn.divisor
simp [hz]
rw [this] at h
tauto
simp at hz
unfold MeromorphicOn.divisor
simp [hz]
unfold MeromorphicOn.divisor at h
simp [hz] at h
have : (hf z hz).order = (((hf.add (MeromorphicOn.const a))) z hz).order := by
have t₀ : (hf z hz).order < (0 : ) := by
by_contra hCon
simp only [not_lt] at hCon
rw [←WithTop.le_untop'_iff (b := 0)] at hCon
exact Lean.Omega.Int.le_lt_asymm hCon h
tauto
rw [← MeromorphicAt.order_add_of_ne_orders (hf z hz) (MeromorphicAt.const a z)]
simp
by_cases ha: (MeromorphicAt.const a z).order =
· simp [ha]
· calc (hf z hz).order
_ ≤ 0 := by exact le_of_lt t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
apply ne_of_lt
calc (hf z hz).order
_ < 0 := by exact t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
rw [this]
2024-11-26 20:04:58 +01:00
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
hf.divisor = (stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf).meromorphicOn.divisor := by
unfold MeromorphicOn.divisor
simp
funext z
by_cases hz : z ∈ U
· simp [hz]
congr 1
apply MeromorphicAt.order_congr
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
· simp [hz]
2024-11-28 18:57:43 +01:00
2024-12-16 17:17:43 +01:00
-- STRONGLY MEROMORPHIC THINGS
2024-11-28 18:57:43 +01:00
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analyticOnNhd
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
AnalyticOnNhd f U := by
apply StronglyMeromorphicOn.analytic
intro z hz
let A := h₂f z hz
unfold MeromorphicOn.divisor at A
simp [hz] at A
by_cases h : (h₁f z hz).meromorphicAt.order =
· rw [h]
simp
· rw [WithTop.le_untop'_iff] at A
tauto
tauto
assumption
2024-12-16 07:36:01 +01:00
2024-12-16 12:43:00 +01:00
2024-12-16 07:36:01 +01:00
theorem StronglyMeromorphicOn.support_divisor
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
2024-12-16 17:17:43 +01:00
(h₂f : ∃ u : U, f u ≠ 0)
(hU : IsConnected U) :
2024-12-16 07:36:01 +01:00
U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by
ext u
constructor
2024-12-16 12:43:00 +01:00
· intro hu
unfold MeromorphicOn.divisor
2024-12-16 17:17:43 +01:00
simp [h₁f.order_ne_top hU h₂f ⟨u, hu.1⟩]
2024-12-16 12:43:00 +01:00
use hu.1
rw [(h₁f u hu.1).order_eq_zero_iff]
simp
exact hu.2
2024-12-16 07:36:01 +01:00
· intro hu
simp at hu
2024-12-16 12:43:00 +01:00
let A := h₁f.meromorphicOn.divisor.supportInU hu
constructor
· exact h₁f.meromorphicOn.divisor.supportInU hu
· simp
let B := (h₁f u A).order_eq_zero_iff.not
simp at B
rw [← B]
unfold MeromorphicOn.divisor at hu
simp [A] at hu
exact hu.1