2024-11-14 16:53:35 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
import Nevanlinna.meromorphicAt
|
|
|
|
|
import Nevanlinna.meromorphicOn_divisor
|
|
|
|
|
import Nevanlinna.stronglyMeromorphicOn
|
|
|
|
|
import Nevanlinna.mathlibAddOn
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
2024-11-15 12:16:41 +01:00
|
|
|
|
theorem MeromorphicOn.open_of_order_eq_top
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f U) :
|
|
|
|
|
IsOpen { u : U | (h₁f u.1 u.2).order = ⊤ } := by
|
|
|
|
|
|
|
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
|
|
intro z hz
|
|
|
|
|
simp at hz
|
2024-11-18 18:44:42 +01:00
|
|
|
|
|
|
|
|
|
have h₁z := hz
|
2024-11-15 12:16:41 +01:00
|
|
|
|
rw [MeromorphicAt.order_eq_top_iff] at hz
|
|
|
|
|
rw [eventually_nhdsWithin_iff] at hz
|
|
|
|
|
rw [eventually_nhds_iff] at hz
|
|
|
|
|
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
|
2024-11-16 13:24:50 +01:00
|
|
|
|
let t : Set U := Subtype.val ⁻¹' t'
|
|
|
|
|
use t
|
|
|
|
|
constructor
|
|
|
|
|
· intro w hw
|
|
|
|
|
simp
|
2024-11-18 18:44:42 +01:00
|
|
|
|
by_cases h₁w : w = z
|
|
|
|
|
· rwa [h₁w]
|
|
|
|
|
· --
|
|
|
|
|
rw [MeromorphicAt.order_eq_top_iff]
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
use t' \ {z.1}
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
apply h₁t'
|
|
|
|
|
exact Set.mem_of_mem_diff h₁y
|
|
|
|
|
exact Set.mem_of_mem_inter_right h₁y
|
|
|
|
|
· constructor
|
|
|
|
|
· apply IsOpen.sdiff h₂t'
|
|
|
|
|
exact isClosed_singleton
|
|
|
|
|
· rw [Set.mem_diff]
|
|
|
|
|
constructor
|
|
|
|
|
· exact hw
|
|
|
|
|
· simp
|
|
|
|
|
exact Subtype.coe_ne_coe.mpr h₁w
|
2024-11-17 16:56:27 +01:00
|
|
|
|
|
2024-11-16 13:24:50 +01:00
|
|
|
|
· constructor
|
|
|
|
|
· exact isOpen_induced h₂t'
|
|
|
|
|
· exact h₃t'
|
2024-11-15 12:16:41 +01:00
|
|
|
|
|
2024-11-19 07:16:04 +01:00
|
|
|
|
|
2024-11-18 19:27:51 +01:00
|
|
|
|
theorem MeromorphicOn.open_of_order_neq_top
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f U) :
|
|
|
|
|
IsOpen { u : U | (h₁f u.1 u.2).order ≠ ⊤ } := by
|
|
|
|
|
|
|
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
|
|
intro z hz
|
|
|
|
|
simp at hz
|
|
|
|
|
|
|
|
|
|
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
rcases A with h|h
|
|
|
|
|
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
|
|
|
|
|
tauto
|
|
|
|
|
· let A := (h₁f z.1 z.2).eventually_analyticAt
|
|
|
|
|
let B := Filter.Eventually.and h A
|
|
|
|
|
rw [eventually_nhdsWithin_iff] at B
|
|
|
|
|
rw [eventually_nhds_iff] at B
|
|
|
|
|
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
|
|
|
|
|
let t : Set U := Subtype.val ⁻¹' t'
|
|
|
|
|
use t
|
|
|
|
|
constructor
|
|
|
|
|
· intro w hw
|
|
|
|
|
simp
|
|
|
|
|
by_cases h₁w : w = z
|
|
|
|
|
· rwa [h₁w]
|
|
|
|
|
· let B := h₁t' w hw
|
|
|
|
|
simp at B
|
|
|
|
|
have : (w : ℂ) ≠ (z : ℂ) := by exact Subtype.coe_ne_coe.mpr h₁w
|
|
|
|
|
let C := B this
|
|
|
|
|
let D := C.2.order_eq_zero_iff.2 C.1
|
|
|
|
|
rw [C.2.meromorphicAt_order, D]
|
|
|
|
|
simp
|
|
|
|
|
· constructor
|
|
|
|
|
· exact isOpen_induced h₂t'
|
|
|
|
|
· exact h₃t'
|
|
|
|
|
|
|
|
|
|
|
2024-11-19 16:33:33 +01:00
|
|
|
|
theorem MeromorphicOn.clopen_of_order_eq_top
|
2024-11-14 16:53:35 +01:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f U) :
|
2024-11-19 16:33:33 +01:00
|
|
|
|
IsClopen { u : U | (h₁f u.1 u.2).order = ⊤ } := by
|
2024-11-14 16:53:35 +01:00
|
|
|
|
|
2024-11-19 16:33:33 +01:00
|
|
|
|
constructor
|
|
|
|
|
· rw [← isOpen_compl_iff]
|
|
|
|
|
exact open_of_order_neq_top h₁f
|
|
|
|
|
· exact open_of_order_eq_top h₁f
|
2024-11-21 17:15:32 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeromorphicOn.order_ne_top
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(hU : IsConnected U)
|
|
|
|
|
(h₁f : StronglyMeromorphicOn f U)
|
|
|
|
|
(h₂f : ∃ u : U, f u ≠ 0) :
|
|
|
|
|
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
|
|
|
|
|
|
|
|
|
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
|
|
|
|
|
have : PreconnectedSpace U := by
|
|
|
|
|
apply isPreconnected_iff_preconnectedSpace.mp
|
|
|
|
|
exact IsConnected.isPreconnected hU
|
|
|
|
|
rw [isClopen_iff] at A
|
|
|
|
|
rcases A with h|h
|
|
|
|
|
· intro u
|
|
|
|
|
have : u ∉ (∅ : Set U) := by exact fun a => a
|
|
|
|
|
rw [← h] at this
|
|
|
|
|
simp at this
|
|
|
|
|
tauto
|
|
|
|
|
· obtain ⟨u, hu⟩ := h₂f
|
|
|
|
|
have : u ∈ (Set.univ : Set U) := by trivial
|
|
|
|
|
rw [← h] at this
|
|
|
|
|
simp at this
|
|
|
|
|
rw [(h₁f u u.2).order_eq_zero_iff.2 hu] at this
|
|
|
|
|
tauto
|