2024-11-29 13:45:05 +01:00
import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.stronglyMeromorphicOn_eliminate
open Real
2024-12-13 16:03:00 +01:00
lemma jensen₀
{R : ℝ }
(hR : 0 < R)
(f : ℂ → ℂ )
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
∃ F : ℂ → ℂ ,
AnalyticOnNhd ℂ F (Metric.closedBall (0 : ℂ ) R)
∧ (∀ (u : (Metric.closedBall (0 : ℂ ) R)), F u ≠ 0)
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall (0 : ℂ ) R)] (fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) := by
have h₁U : IsConnected (Metric.closedBall (0 : ℂ ) R) := by
constructor
· apply Metric.nonempty_closedBall.mpr
exact le_of_lt hR
· exact (convex_closedBall (0 : ℂ ) R).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ℂ ) R) := isCompact_closedBall (0 : ℂ ) R
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f (by use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩)
use F
constructor
· exact h₂F
· constructor
· exact fun u ↦ h₃F u
· rw [Filter.eventuallyEq_iff_exists_mem]
use {z | f z ≠ 0}
constructor
· sorry
· intro z hz
simp at hz
nth_rw 1 [h₄F]
simp only [Pi.mul_apply, norm_mul]
sorry
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
theorem jensen
{R : ℝ }
(hR : 0 < R)
2024-11-29 13:45:05 +01:00
(f : ℂ → ℂ )
2024-12-03 17:21:22 +01:00
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
2024-11-29 13:45:05 +01:00
(h₂f : f 0 ≠ 0) :
2024-12-03 17:21:22 +01:00
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have h₁U : IsConnected (Metric.closedBall (0 : ℂ ) R) := by
2024-11-29 13:45:05 +01:00
constructor
2024-12-03 17:21:22 +01:00
· apply Metric.nonempty_closedBall.mpr
exact le_of_lt hR
· exact (convex_closedBall (0 : ℂ ) R).isPreconnected
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have h₂U : IsCompact (Metric.closedBall (0 : ℂ ) R) :=
isCompact_closedBall 0 R
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ ) R), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
2024-11-29 13:45:05 +01:00
2024-12-05 13:42:47 +01:00
have h'₁f : StronglyMeromorphicAt f 0 := by
apply h₁f
simp
exact le_of_lt hR
have h''₂f : h'₁f.meromorphicAt.order = 0 := by
rwa [h'₁f.order_eq_zero_iff]
have h'''₂f : h₁f.meromorphicOn.divisor 0 = 0 := by
unfold MeromorphicOn.divisor
simp
tauto
2024-12-02 16:49:16 +01:00
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
2024-12-05 13:42:47 +01:00
have h'₃f : ∀ s ∈ h₃f.toFinset, s ≠ 0 := by
by_contra hCon
push_neg at hCon
obtain ⟨s, h₁s, h₂s⟩ := hCon
rw [h₂s] at h₁s
simp at h₁s
tauto
2024-12-03 17:21:22 +01:00
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
2024-12-02 16:49:16 +01:00
intro x
contrapose
simp
intro hx
rw [hx]
simp
rw [finsum_eq_sum_of_support_subset _ h₄f]
2024-11-29 13:45:05 +01:00
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
2024-12-02 16:49:16 +01:00
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
intro u
contrapose
simp
intro hu
rw [hu]
simp
exact rfl
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
have h₁G {z : ℂ } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
intro s
contrapose
simp
intro hs
rw [hs]
simp
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ ) R, f z ≠ 0 → log ‖f z‖ = G z := by
2024-11-29 13:45:05 +01:00
intro z h₁z h₂z
2024-12-02 16:49:16 +01:00
rw [h₄F]
simp only [Pi.mul_apply, norm_mul]
simp only [Finset.prod_apply, norm_prod, norm_zpow]
2024-11-29 13:45:05 +01:00
rw [Real.log_mul]
rw [Real.log_prod]
2024-12-02 16:49:16 +01:00
simp_rw [Real.log_zpow]
dsimp only [G]
rw [finsum_eq_sum_of_support_subset _ h₁G]
--
intro x hx
2024-12-03 10:21:38 +01:00
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
2024-11-29 13:45:05 +01:00
tauto
2024-12-03 10:21:38 +01:00
apply zpow_ne_zero
simpa
2024-11-29 13:45:05 +01:00
-- Complex.abs (F z) ≠ 0
simp
2024-12-03 10:21:38 +01:00
exact h₃F ⟨z, h₁z⟩
--
rw [Finset.prod_ne_zero_iff]
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have int_logAbs_f_eq_int_G : ∫ (x : ℝ ) in (0)..2 * π, log ‖f (circleMap 0 R x)‖ = ∫ (x : ℝ ) in (0)..2 * π, G (circleMap 0 R x) := by
2024-11-29 13:45:05 +01:00
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
2024-12-03 17:21:22 +01:00
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 R a)‖ = G (circleMap 0 R a)}
⊆ (circleMap 0 R)⁻¹' (h₃f.toFinset) := by
2024-11-29 13:45:05 +01:00
intro a ha
simp at ha
simp
by_contra C
2024-12-03 17:21:22 +01:00
have t₀ : (circleMap 0 R a) ∈ Metric.closedBall 0 R := by
apply circleMap_mem_closedBall
exact le_of_lt hR
have t₁ : f (circleMap 0 R a) ≠ 0 := by
let A := h₁f (circleMap 0 R a) t₀
2024-12-03 10:21:38 +01:00
rw [← A.order_eq_zero_iff]
unfold MeromorphicOn.divisor at C
simp [t₀] at C
rcases C with C₁|C₂
· assumption
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
2024-12-03 17:21:22 +01:00
let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩
2024-12-03 10:21:38 +01:00
rw [C₂] at C
2024-12-03 17:21:22 +01:00
have : ∃ u : (Metric.closedBall (0 : ℂ ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
use ⟨(0 : ℂ ), (by simp; exact le_of_lt hR)⟩
let H := h₁f 0 (by simp; exact le_of_lt hR)
2024-12-03 10:21:38 +01:00
let K := H.order_eq_zero_iff.2 h₂f
rw [K]
simp
let D := C this
tauto
2024-12-03 17:21:22 +01:00
exact ha.2 (decompose_f (circleMap 0 R a) t₀ t₁)
2024-11-29 13:45:05 +01:00
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
2024-12-03 10:21:38 +01:00
exact Finset.finite_toSet h₃f.toFinset
--
2024-12-05 13:42:47 +01:00
exact Ne.symm (ne_of_lt hR)
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
have decompose_int_G : ∫ (x : ℝ ) in (0)..2 * π, G (circleMap 0 R x)
= (∫ (x : ℝ ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 R x))))
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - ↑x)) := by
2024-11-29 13:45:05 +01:00
dsimp [G]
2024-12-03 12:05:00 +01:00
2024-11-29 13:45:05 +01:00
rw [intervalIntegral.integral_add]
2024-12-03 12:05:00 +01:00
congr
2024-12-03 17:21:22 +01:00
have t₀ {x : ℝ } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 R x - s))) ⊆ h₃f.toFinset := by
2024-12-03 12:05:00 +01:00
intro s hs
simp at hs
simp [hs.1]
conv =>
left
arg 1
intro x
rw [finsum_eq_sum_of_support_subset _ t₀]
2024-11-29 13:45:05 +01:00
rw [intervalIntegral.integral_finset_sum]
2024-12-03 17:21:22 +01:00
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ ) * ∫ (x_1 : ℝ ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))) ⊆ h₃f.toFinset := by
2024-12-03 12:05:00 +01:00
simp
intro s
contrapose!
simp
tauto
conv =>
right
rw [finsum_eq_sum_of_support_subset _ t₁]
simp
2024-11-29 13:45:05 +01:00
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
2024-12-03 17:21:22 +01:00
by_cases h₂i : ‖i‖ = R
2024-11-29 13:45:05 +01:00
-- case pos
2024-12-03 17:21:22 +01:00
sorry
--exact int'₂ h₂i
2024-11-29 13:45:05 +01:00
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
2024-12-03 17:21:22 +01:00
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
2024-11-29 13:45:05 +01:00
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
2024-12-03 17:21:22 +01:00
rw [abs_circleMap_zero R x]
2024-11-29 13:45:05 +01:00
simp
2024-12-03 17:21:22 +01:00
linarith
--
2024-11-29 13:45:05 +01:00
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
2024-12-03 17:21:22 +01:00
have : (fun x => log (Complex.abs (F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 R x) :=
2024-11-29 13:45:05 +01:00
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
2024-12-03 12:05:00 +01:00
simp
2024-12-03 17:21:22 +01:00
have : (circleMap 0 R x) ∈ (Metric.closedBall 0 R) := by
simp
rw [abs_le]
simp [hR]
exact le_of_lt hR
exact h₃F ⟨(circleMap 0 R x), this⟩
2024-12-03 12:05:00 +01:00
2024-11-29 13:45:05 +01:00
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
2024-12-03 16:54:13 +01:00
apply DifferentiableAt.continuousAt (𝕜 := ℂ )
apply AnalyticAt.differentiableAt
2024-12-03 17:21:22 +01:00
apply h₂F (circleMap 0 R x)
simp; rw [abs_le]; simp [hR]; exact le_of_lt hR
2024-11-29 13:45:05 +01:00
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
2024-12-03 16:54:13 +01:00
-- IntervalIntegrable (fun x => ∑ᶠ (s : ℂ ), ↑(↑⋯.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) MeasureTheory.volume 0 (2 * π)
--simp? at h₁G
have h₁G' {z : ℂ } : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * log (Complex.abs (z - s))) ⊆ ↑h₃f.toFinset := by
exact h₁G
conv =>
arg 1
intro z
rw [finsum_eq_sum_of_support_subset _ h₁G']
conv =>
arg 1
rw [← Finset.sum_fn]
2024-11-29 13:45:05 +01:00
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ℂ ) 1 := i.2
--simp at this
2024-12-03 17:21:22 +01:00
by_cases h₂i : ‖i‖ = R
2024-11-29 13:45:05 +01:00
-- case pos
2024-12-03 17:21:22 +01:00
--exact int'₂ h₂i
sorry
2024-11-29 13:45:05 +01:00
-- case neg
--have : i.1 ∈ Metric.ball (0 : ℂ ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
2024-12-03 17:21:22 +01:00
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
2024-11-29 13:45:05 +01:00
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
2024-12-03 17:21:22 +01:00
rw [abs_circleMap_zero R x]
2024-11-29 13:45:05 +01:00
simp
2024-12-03 17:21:22 +01:00
linarith
2024-11-29 13:45:05 +01:00
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
2024-12-03 17:21:22 +01:00
have t₁ : (∫ (x : ℝ ) in (0)..2 * Real.pi, log ‖F (circleMap 0 R x)‖) = 2 * Real.pi * log ‖F 0‖ := by
2024-11-29 13:45:05 +01:00
let logAbsF := fun w ↦ Real.log ‖F w‖
2024-12-03 17:21:22 +01:00
have t₀ : ∀ z ∈ Metric.closedBall 0 R, HarmonicAt logAbsF z := by
2024-11-29 13:45:05 +01:00
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
2024-12-03 16:54:13 +01:00
exact AnalyticAt.holomorphicAt (h₂F z hz)
exact h₃F ⟨z, hz⟩
2024-11-29 13:45:05 +01:00
2024-12-03 17:21:22 +01:00
apply harmonic_meanValue₁ R hR t₀
2024-11-29 13:45:05 +01:00
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
2024-12-03 16:54:13 +01:00
2024-12-03 17:21:22 +01:00
have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖) ⊆ ↑h₃f.toFinset := by
2024-12-03 16:54:13 +01:00
intro s hs
simp at hs
simp [hs.1]
rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G
2024-12-05 12:00:49 +01:00
have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖ = ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (2 * π) * log R := by
apply Finset.sum_congr rfl
intro s hs
have : s ∈ Metric.closedBall 0 R := by
let A := h₁f.meromorphicOn.divisor.supportInU
have : s ∈ Function.support h₁f.meromorphicOn.divisor := by
simp at hs
exact hs
exact A this
rw [int₄ hR this]
linarith
2024-12-03 16:54:13 +01:00
rw [this] at decompose_int_G
2024-11-29 13:45:05 +01:00
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
2024-12-03 16:54:13 +01:00
let X := h₄F
nth_rw 1 [h₄F]
2024-11-29 13:45:05 +01:00
simp
2024-12-05 12:00:49 +01:00
have : π⁻¹ * 2⁻¹ * (2 * π) = 1 := by
calc π⁻¹ * 2⁻¹ * (2 * π)
_ = π⁻¹ * (2⁻¹ * 2) * π := by ring
_ = π⁻¹ * π := by ring
_ = (π⁻¹ * π) := by ring
_ = 1 := by
2024-11-29 13:45:05 +01:00
rw [inv_mul_cancel₀]
exact pi_ne_zero
2024-12-05 12:00:49 +01:00
--rw [this]
2024-11-29 13:45:05 +01:00
rw [log_mul]
rw [log_prod]
simp
2024-12-03 16:54:13 +01:00
rw [add_comm]
2024-12-05 12:00:49 +01:00
rw [mul_add]
rw [← mul_assoc (π⁻¹ * 2⁻¹), this]
simp
rw [add_comm]
nth_rw 2 [add_comm]
rw [add_assoc]
congr
rw [Finset.mul_sum]
rw [← sub_eq_add_neg]
rw [← Finset.sum_sub_distrib]
rw [Finset.sum_congr rfl]
intro s hs
rw [log_mul, log_inv]
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
rw [mul_comm _ (2 * π)]
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
rw [this]
simp
rw [mul_add]
ring
--
2024-12-05 13:42:47 +01:00
exact Ne.symm (ne_of_lt hR)
2024-11-29 13:45:05 +01:00
--
2024-12-05 13:42:47 +01:00
simp
2024-12-03 16:54:13 +01:00
by_contra hCon
2024-12-05 13:42:47 +01:00
rw [hCon] at hs
simp at hs
exact hs h'''₂f
2024-12-03 16:54:13 +01:00
--
2024-12-05 13:42:47 +01:00
intro s hs
apply zpow_ne_zero
2024-12-03 16:54:13 +01:00
simp
by_contra hCon
2024-12-05 13:42:47 +01:00
rw [hCon] at hs
simp at hs
exact hs h'''₂f
--
simp only [ne_eq, map_eq_zero]
rw [← ne_eq]
exact h₃F ⟨0, (by simp; exact le_of_lt hR)⟩
2024-11-29 13:45:05 +01:00
--
rw [Finset.prod_ne_zero_iff]
2024-12-05 13:42:47 +01:00
intro s hs
apply zpow_ne_zero
simp
2024-12-03 16:54:13 +01:00
by_contra hCon
2024-12-05 13:42:47 +01:00
rw [hCon] at hs
simp at hs
exact hs h'''₂f