Update stronglyMeromorphic_JensenFormula.lean

This commit is contained in:
Stefan Kebekus 2024-12-03 12:05:00 +01:00
parent 8d72fae4dc
commit ebfa0e9bd0

View File

@ -149,11 +149,32 @@ theorem jensen_case_R_eq_one
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
congr
have t₀ {x : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) ⊆ h₃f.toFinset := by
intro s hs
simp at hs
simp [hs.1]
conv =>
left
arg 1
intro x
rw [finsum_eq_sum_of_support_subset _ t₀]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))) ⊆ h₃f.toFinset := by
simp
intro s
contrapose!
simp
tauto
conv =>
right
rw [finsum_eq_sum_of_support_subset _ t₁]
simp
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
@ -161,7 +182,7 @@ theorem jensen_case_R_eq_one
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i.1‖ = 1
by_cases h₂i : ‖i‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
@ -195,7 +216,9 @@ theorem jensen_case_R_eq_one
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp [h₂F]
simp
exact h₃F ⟨(circleMap 0 1 x), (by simp)⟩
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt