nevanlinna/Nevanlinna/stronglyMeromorphic_JensenFormula.lean

481 lines
14 KiB
Plaintext
Raw Normal View History

import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.stronglyMeromorphicOn_eliminate
import Nevanlinna.meromorphicOn_divisor
open Real
theorem jensen_case_R_eq_one
(f : )
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
have h₁U : IsConnected (Metric.closedBall (0 : ) 1) := by
constructor
2024-12-03 09:08:14 +01:00
· refine Metric.nonempty_closedBall.mpr (by simp)
· exact (convex_closedBall (0 : ) 1).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ) 1) :=
isCompact_closedBall 0 1
have h'₂f : ∃ u : (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (by simp)⟩
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by
intro x
contrapose
simp
intro hx
rw [hx]
simp
rw [finsum_eq_sum_of_support_subset _ h₄f]
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
intro u
contrapose
simp
intro hu
rw [hu]
simp
exact rfl
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
have h₁G {z : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
intro s
contrapose
simp
intro hs
rw [hs]
simp
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
rw [h₄F]
simp only [Pi.mul_apply, norm_mul]
simp only [Finset.prod_apply, norm_prod, norm_zpow]
rw [Real.log_mul]
rw [Real.log_prod]
simp_rw [Real.log_zpow]
dsimp only [G]
rw [finsum_eq_sum_of_support_subset _ h₁G]
--
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
-- Complex.abs (F z) ≠ 0
simp
exact h₃F ⟨z, h₁z⟩
--
rw [Finset.prod_ne_zero_iff]
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
⊆ (circleMap 0 1)⁻¹' (h₃f.toFinset) := by
intro a ha
simp at ha
simp
by_contra C
have t₀ : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
have t₁ : f (circleMap 0 1 a) ≠ 0 := by
let A := h₁f (circleMap 0 1 a) t₀
rw [← A.order_eq_zero_iff]
unfold MeromorphicOn.divisor at C
simp [t₀] at C
rcases C with C₁|C₂
· assumption
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
let C := fun q ↦ B q ⟨(circleMap 0 1 a), t₀⟩
rw [C₂] at C
have : ∃ u : (Metric.closedBall (0 : ) 1), (h₁f u u.2).meromorphicAt.order ≠ := by
use ⟨(0 : ), (by simp)⟩
let H := h₁f 0 (by simp)
let K := H.order_eq_zero_iff.2 h₂f
rw [K]
simp
let D := C this
tauto
exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
exact Finset.finite_toSet h₃f.toFinset
--
simp
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp [h₂F]
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply DifferentiableAt.continuousAt (𝕜 := )
apply HolomorphicAt.differentiableAt
simp [h'₁F]
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
= ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (fun x => (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
funext x
simp
rw [this]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
--have : i.1 ∈ Metric.ball (0 : ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
apply h'₁F z hz
exact h₂F z hz
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
conv at decompose_int_G =>
right
right
arg 2
intro x
right
rw [int₃ x.2]
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
rw [h₃F]
simp
have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
calc π⁻¹ * 2⁻¹ * (2 * π * l)
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h₁f h'₂f).toFinset)]
simp
simp
intro x ⟨h₁x, _⟩
simp
dsimp [AnalyticOnNhd.order] at h₁x
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOnNhd.order.proof_1 h₁f x) h₁x
--
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
simp
apply h₂F
simp
lemma const_mul_circleMap_zero
{R θ : } :
circleMap 0 R θ = R * circleMap 0 1 θ := by
rw [circleMap_zero, circleMap_zero]
simp
theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : AnalyticOnNhd f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : AnalyticOnNhd F (Metric.closedBall 0 1) := by
apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A
simp
rw [A]
simp_rw [← const_mul_circleMap_zero]
simp
let e : (Metric.closedBall (0 : ) 1) → (Metric.closedBall (0 : ) R) := by
intro ⟨x, hx⟩
have hy : R • x ∈ Metric.closedBall (0 : ) R := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
exact ⟨R • x, hy⟩
let e' : (Metric.closedBall (0 : ) R) → (Metric.closedBall (0 : ) 1) := by
intro ⟨x, hx⟩
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ) 1 := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R⁻¹ * Complex.abs x
_ ≤ R⁻¹ * R := by
apply mul_le_mul_of_nonneg_left hx
apply inv_nonneg.mpr
exact abs_eq_self.mp (id (Eq.symm this))
_ = 1 := by
apply inv_mul_cancel₀
exact Ne.symm (ne_of_lt hR)
exact ⟨R⁻¹ • x, hy⟩
apply finsum_eq_of_bijective e
apply Function.bijective_iff_has_inverse.mpr
use e'
constructor
· apply Function.leftInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
· apply Function.rightInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
intro x
simp
by_cases hx : x = (0 : )
rw [hx]
simp
rw [log_mul, log_mul, log_inv, log_inv]
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
simp
left
congr 1
dsimp [AnalyticOnNhd.order]
rw [← AnalyticAt.order_comp_CLE ]
--
simpa
--
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
apply inv_ne_zero
exact Ne.symm (ne_of_lt hR)
--
exact Ne.symm (ne_of_lt hR)
--
simp
constructor
· assumption
· exact Ne.symm (ne_of_lt hR)