2024-06-23 21:13:01 +02:00
|
|
|
|
import Mathlib.Analysis.InnerProductSpace.Basic
|
|
|
|
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
|
|
|
|
import Mathlib.Algebra.BigOperators.Basic
|
|
|
|
|
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
|
|
|
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
2024-06-24 12:14:18 +02:00
|
|
|
|
import Mathlib.LinearAlgebra.Basis
|
2024-06-23 21:13:01 +02:00
|
|
|
|
|
|
|
|
|
open BigOperators
|
|
|
|
|
open Finset
|
|
|
|
|
|
|
|
|
|
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
|
|
|
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
|
|
|
|
|
|
|
|
|
|
2024-06-24 12:14:18 +02:00
|
|
|
|
lemma vectorPresentation
|
2024-06-23 21:13:01 +02:00
|
|
|
|
[Fintype ι]
|
2024-06-24 12:14:18 +02:00
|
|
|
|
(b : Basis ι ℝ E)
|
|
|
|
|
(hb : Orthonormal ℝ b)
|
|
|
|
|
(v : E) :
|
|
|
|
|
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
|
|
|
|
nth_rw 1 [← (b.sum_repr v)]
|
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
|
|
|
|
simp
|
2024-06-23 21:13:01 +02:00
|
|
|
|
|
2024-06-24 07:58:04 +02:00
|
|
|
|
|
2024-06-23 21:13:01 +02:00
|
|
|
|
theorem LaplaceIndep
|
|
|
|
|
[Fintype ι]
|
|
|
|
|
(v₁ : Basis ι ℝ E)
|
|
|
|
|
(hv₁ : Orthonormal ℝ v₁)
|
|
|
|
|
(v₂ : Basis ι ℝ E)
|
|
|
|
|
(hv₂ : Orthonormal ℝ v₂)
|
|
|
|
|
(f : E → F) :
|
|
|
|
|
∑ i, iteratedFDeriv ℝ 2 f z ![v₁ i, v₁ i] = ∑ i, iteratedFDeriv ℝ 2 f z ![v₂ i, v₂ i] := by
|
|
|
|
|
|
|
|
|
|
have (v : E) : v = ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j) :=
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
conv =>
|
|
|
|
|
right
|
|
|
|
|
arg 2
|
|
|
|
|
intro i
|
|
|
|
|
rw [this (v₂ i)]
|
|
|
|
|
rw [this (v₂ i)]
|
|
|
|
|
conv =>
|
|
|
|
|
right
|
|
|
|
|
arg 2
|
|
|
|
|
intro i
|
2024-06-24 07:58:04 +02:00
|
|
|
|
--rw [ContinuousMultilinearMap.map_sum_finset]
|
|
|
|
|
|
|
|
|
|
have v : E := by sorry
|
2024-06-24 12:14:18 +02:00
|
|
|
|
--let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)]
|
|
|
|
|
--simp at t
|
|
|
|
|
--have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z
|
2024-06-24 07:58:04 +02:00
|
|
|
|
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
|
2024-06-24 12:14:18 +02:00
|
|
|
|
--have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j))
|
|
|
|
|
--have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
|
2024-06-24 07:58:04 +02:00
|
|
|
|
|
2024-06-24 08:03:39 +02:00
|
|
|
|
let X := ContinuousMultilinearMap.map_sum
|
2024-06-24 07:58:04 +02:00
|
|
|
|
(iteratedFDeriv ℝ 2 f z)
|
|
|
|
|
(fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j)))
|
2024-06-24 08:03:39 +02:00
|
|
|
|
|
|
|
|
|
--
|
|
|
|
|
-- (fun _ ↦ Finset.univ)
|
2024-06-24 07:58:04 +02:00
|
|
|
|
simp at X
|
|
|
|
|
|
2024-06-23 21:13:01 +02:00
|
|
|
|
sorry
|
2024-06-24 12:14:18 +02:00
|
|
|
|
|
|
|
|
|
noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by
|
|
|
|
|
let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ)
|
|
|
|
|
exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noncomputable def Laplace₂
|
|
|
|
|
[Fintype ι]
|
|
|
|
|
(v : Basis ι ℝ E)
|
|
|
|
|
(hv : Orthonormal ℝ v)
|
|
|
|
|
(f : E → F) :
|
|
|
|
|
E → F :=
|
|
|
|
|
fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i]
|