Update laplace2.lean

This commit is contained in:
Stefan Kebekus 2024-06-24 12:14:18 +02:00
parent ecdc182f2b
commit 42cf2e41b9

View File

@ -3,6 +3,7 @@ import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.LinearAlgebra.Basis
open BigOperators
open Finset
@ -10,24 +11,19 @@ open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
#check EuclideanSpace.norm_eq
#check EuclideanSpace.dist_eq
noncomputable def Laplace₁ (n : ) (f : EuclideanSpace (Fin n) → F) : EuclideanSpace (Fin n) → F := by
let e : Fin n → EuclideanSpace (Fin n) := fun i ↦ EuclideanSpace.single i (1 : )
exact fun z ↦ ∑ i, iteratedFDeriv 2 f z ![e i, e i]
noncomputable def Laplace₂
lemma vectorPresentation
[Fintype ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]
(b : Basis ι E)
(hb : Orthonormal b)
(v : E) :
v = ∑ i, ⟪b i, v⟫_ • (b i) := by
nth_rw 1 [← (b.sum_repr v)]
apply Fintype.sum_congr
intro i
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
simp
#check ContinuousMultilinearMap.map_sum_finset
theorem LaplaceIndep
[Fintype ι]
@ -54,12 +50,12 @@ theorem LaplaceIndep
--rw [ContinuousMultilinearMap.map_sum_finset]
have v : E := by sorry
let t := ![∑ j, ⟪v₁ j, v⟫_ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ • (v₁ j)]
simp at t
have L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv 2 f z
--let t := ![∑ j, ⟪v₁ j, v⟫_ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ • (v₁ j)]
--simp at t
--have L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv 2 f z
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j))
have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
--have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j))
--have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
let X := ContinuousMultilinearMap.map_sum
(iteratedFDeriv 2 f z)
@ -70,3 +66,16 @@ theorem LaplaceIndep
simp at X
sorry
noncomputable def Laplace₁ (n : ) (f : EuclideanSpace (Fin n) → F) : EuclideanSpace (Fin n) → F := by
let e : Fin n → EuclideanSpace (Fin n) := fun i ↦ EuclideanSpace.single i (1 : )
exact fun z ↦ ∑ i, iteratedFDeriv 2 f z ![e i, e i]
noncomputable def Laplace₂
[Fintype ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]