Update laplace2.lean
This commit is contained in:
parent
ecdc182f2b
commit
42cf2e41b9
@ -3,6 +3,7 @@ import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
import Mathlib.Algebra.BigOperators.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.LinearAlgebra.Basis
|
||||
|
||||
open BigOperators
|
||||
open Finset
|
||||
@ -10,24 +11,19 @@ open Finset
|
||||
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
|
||||
#check EuclideanSpace.norm_eq
|
||||
#check EuclideanSpace.dist_eq
|
||||
|
||||
|
||||
noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by
|
||||
let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ)
|
||||
exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i]
|
||||
|
||||
|
||||
noncomputable def Laplace₂
|
||||
lemma vectorPresentation
|
||||
[Fintype ι]
|
||||
(v : Basis ι ℝ E)
|
||||
(hv : Orthonormal ℝ v)
|
||||
(f : E → F) :
|
||||
E → F :=
|
||||
fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i]
|
||||
(b : Basis ι ℝ E)
|
||||
(hb : Orthonormal ℝ b)
|
||||
(v : E) :
|
||||
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
||||
nth_rw 1 [← (b.sum_repr v)]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
||||
simp
|
||||
|
||||
#check ContinuousMultilinearMap.map_sum_finset
|
||||
|
||||
theorem LaplaceIndep
|
||||
[Fintype ι]
|
||||
@ -54,12 +50,12 @@ theorem LaplaceIndep
|
||||
--rw [ContinuousMultilinearMap.map_sum_finset]
|
||||
|
||||
have v : E := by sorry
|
||||
let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)]
|
||||
simp at t
|
||||
have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z
|
||||
--let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)]
|
||||
--simp at t
|
||||
--have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z
|
||||
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
|
||||
have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j))
|
||||
have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
|
||||
--have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j))
|
||||
--have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
|
||||
|
||||
let X := ContinuousMultilinearMap.map_sum
|
||||
(iteratedFDeriv ℝ 2 f z)
|
||||
@ -70,3 +66,16 @@ theorem LaplaceIndep
|
||||
simp at X
|
||||
|
||||
sorry
|
||||
|
||||
noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by
|
||||
let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ)
|
||||
exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i]
|
||||
|
||||
|
||||
noncomputable def Laplace₂
|
||||
[Fintype ι]
|
||||
(v : Basis ι ℝ E)
|
||||
(hv : Orthonormal ℝ v)
|
||||
(f : E → F) :
|
||||
E → F :=
|
||||
fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i]
|
||||
|
Loading…
Reference in New Issue
Block a user