From 42cf2e41b961fd39ab75b41ea42cf2982b6398a6 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 24 Jun 2024 12:14:18 +0200 Subject: [PATCH] Update laplace2.lean --- Nevanlinna/laplace2.lean | 49 ++++++++++++++++++++++++---------------- 1 file changed, 29 insertions(+), 20 deletions(-) diff --git a/Nevanlinna/laplace2.lean b/Nevanlinna/laplace2.lean index c87fa76..6f4830d 100644 --- a/Nevanlinna/laplace2.lean +++ b/Nevanlinna/laplace2.lean @@ -3,6 +3,7 @@ import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Algebra.BigOperators.Basic import Mathlib.Analysis.Calculus.ContDiff.Bounds import Mathlib.Analysis.Calculus.FDeriv.Symmetric +import Mathlib.LinearAlgebra.Basis open BigOperators open Finset @@ -10,24 +11,19 @@ open Finset variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] -#check EuclideanSpace.norm_eq -#check EuclideanSpace.dist_eq - -noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by - let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ) - exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i] - - -noncomputable def Laplace₂ +lemma vectorPresentation [Fintype ι] - (v : Basis ι ℝ E) - (hv : Orthonormal ℝ v) - (f : E → F) : - E → F := - fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i] + (b : Basis ι ℝ E) + (hb : Orthonormal ℝ b) + (v : E) : + v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by + nth_rw 1 [← (b.sum_repr v)] + apply Fintype.sum_congr + intro i + rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i] + simp -#check ContinuousMultilinearMap.map_sum_finset theorem LaplaceIndep [Fintype ι] @@ -54,12 +50,12 @@ theorem LaplaceIndep --rw [ContinuousMultilinearMap.map_sum_finset] have v : E := by sorry - let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)] - simp at t - have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z + --let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)] + --simp at t + --have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z --have α : Fin 2 → Type* := by exact fun _ ↦ ι - have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j)) - have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ + --have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j)) + --have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ let X := ContinuousMultilinearMap.map_sum (iteratedFDeriv ℝ 2 f z) @@ -70,3 +66,16 @@ theorem LaplaceIndep simp at X sorry + +noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by + let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ) + exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i] + + +noncomputable def Laplace₂ + [Fintype ι] + (v : Basis ι ℝ E) + (hv : Orthonormal ℝ v) + (f : E → F) : + E → F := + fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i]