nevanlinna/Nevanlinna/holomorphic_JensenFormula.lean

262 lines
7.4 KiB
Plaintext
Raw Normal View History

2024-07-31 14:54:41 +02:00
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
2024-08-09 09:46:37 +02:00
lemma l₀ {x₁ x₂ : } : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
2024-08-08 17:45:07 +02:00
dsimp [circleMap]
simp
rw [add_mul, Complex.exp_add]
2024-08-09 09:46:37 +02:00
lemma l₁ {x : } : ‖circleMap 0 1 x‖ = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
lemma l₂ {x : } : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
calc ‖(circleMap 0 1 x) - a‖
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by
exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
rw [l₁]
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
rw [mul_sub]
_ = ‖(circleMap 0 1 0) - (circleMap 0 1 (-x)) * a‖ := by
rw [l₀]
simp
_ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
congr
dsimp [circleMap]
simp
2024-08-08 17:45:07 +02:00
2024-08-01 10:02:36 +02:00
lemma int₀
{a : }
2024-08-08 17:45:07 +02:00
(ha : a ∈ Metric.ball 0 1) :
2024-08-01 10:02:36 +02:00
∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
2024-08-08 17:45:07 +02:00
2024-08-09 10:31:13 +02:00
by_cases h₁a : a = 0
· -- case: a = 0
rw [h₁a]
simp
-- case: a ≠ 0
2024-08-09 09:46:37 +02:00
simp_rw [l₂]
have {x : } : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
2024-08-08 17:45:07 +02:00
2024-08-09 09:46:37 +02:00
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
have {x : } : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
2024-08-08 17:45:07 +02:00
conv =>
left
arg 1
intro x
2024-08-09 09:46:37 +02:00
rw [this]
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
2024-08-08 17:45:07 +02:00
simp
2024-08-09 09:46:37 +02:00
dsimp [f₁]
2024-08-08 17:45:07 +02:00
2024-08-09 10:31:13 +02:00
let ρ := ‖a‖⁻¹
have hρ : 1 < ρ := by
apply one_lt_inv_iff.mpr
constructor
· exact norm_pos_iff'.mpr h₁a
· exact mem_ball_zero_iff.mp ha
2024-08-09 09:46:37 +02:00
let F := fun z ↦ Real.log ‖1 - z * a‖
2024-08-08 17:45:07 +02:00
2024-08-09 10:31:13 +02:00
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
intro x hx
apply logabs_of_holomorphicAt_is_harmonic
apply Differentiable.holomorphicAt
fun_prop
apply sub_ne_zero_of_ne
by_contra h
have : ‖x * a‖ < 1 := by
calc ‖x * a‖
_ = ‖x‖ * ‖a‖ := by exact NormedField.norm_mul' x a
_ < ρ * ‖a‖ := by
apply (mul_lt_mul_right _).2
exact mem_ball_zero_iff.mp hx
exact norm_pos_iff'.mpr h₁a
_ = 1 := by
dsimp [ρ]
apply inv_mul_cancel
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
rw [← h] at this
simp at this
2024-08-08 17:45:07 +02:00
2024-08-09 10:31:13 +02:00
let A := harmonic_meanValue ρ 1 Real.zero_lt_one hρ hf
2024-08-09 09:46:37 +02:00
dsimp [F] at A
simp at A
exact A
2024-08-08 17:45:07 +02:00
2024-07-31 14:54:41 +02:00
2024-08-12 13:01:35 +02:00
lemma int₁ :
∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - 1‖ = 0 := by
dsimp [circleMap]
sorry
2024-07-31 14:54:41 +02:00
theorem jensen_case_R_eq_one
(f : )
(h₁f : Differentiable f)
(h₂f : f 0 ≠ 0)
(S : Finset )
(a : S → )
(ha : ∀ s, a s ∈ Metric.ball 0 1)
(F : )
(h₁F : Differentiable F)
(h₂F : ∀ z, F z ≠ 0)
2024-07-31 15:59:43 +02:00
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
2024-07-31 14:54:41 +02:00
:
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
2024-08-08 17:45:07 +02:00
have t₀ : ∀ z ∈ Metric.ball 0 2, HarmonicAt logAbsF z := by
intro z _
2024-07-31 14:54:41 +02:00
apply logabs_of_holomorphicAt_is_harmonic
2024-07-31 15:59:43 +02:00
apply h₁F.holomorphicAt
2024-07-31 14:54:41 +02:00
exact h₂F z
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
2024-08-08 17:45:07 +02:00
have hR : (0 : ) < (1 : ) := by apply Real.zero_lt_one
have hρ : (1 : ) < (2 : ) := by linarith
apply harmonic_meanValue 2 1 hR hρ t₀
2024-07-31 14:54:41 +02:00
2024-07-31 15:59:43 +02:00
have t₂ : ∀ s, f (a s) = 0 := by
intro s
rw [h₃F]
simp
right
apply Finset.prod_eq_zero_iff.2
use s
simp
2024-07-31 14:54:41 +02:00
let logAbsf := fun w ↦ Real.log ‖f w‖
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
2024-07-31 15:59:43 +02:00
intro z hz
dsimp [logAbsf]
rw [h₃F]
simp_rw [Complex.abs.map_mul]
rw [Complex.abs_prod]
rw [Real.log_mul]
rw [Real.log_prod]
rfl
intro s hs
simp
by_contra ha'
rw [ha'] at hz
exact hz (t₂ s)
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra h'
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
simp at h''
rw [h''] at hz
let A := t₂ s
exact hz A
2024-07-31 14:54:41 +02:00
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
2024-08-01 10:02:36 +02:00
intro z hz
rw [s₀ z hz]
simp
2024-07-31 14:54:41 +02:00
rw [s₁ 0 h₂f] at t₁
2024-08-01 10:02:36 +02:00
have h₀ {x : } : f (circleMap 0 1 x) ≠ 0 := by
rw [h₃F]
simp
constructor
· exact h₂F (circleMap 0 1 x)
· by_contra h'
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
have : circleMap 0 1 x = a s := by
rw [← sub_zero (circleMap 0 1 x)]
nth_rw 2 [← h₂s]
simp
let A := ha s
rw [← this] at A
simp at A
2024-07-31 15:59:43 +02:00
2024-08-01 10:02:36 +02:00
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁
2024-07-31 14:54:41 +02:00
rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁
2024-08-01 10:02:36 +02:00
simp_rw [int₀ (ha _)] at t₁
2024-07-31 14:54:41 +02:00
simp at t₁
rw [t₁]
simp
2024-07-31 15:08:27 +02:00
have {w : } : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by
ring_nf
simp [mul_inv_cancel Real.pi_ne_zero]
2024-07-31 14:54:41 +02:00
rw [this]
simp
rfl
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
2024-08-01 10:02:36 +02:00
intro i _
2024-07-31 14:54:41 +02:00
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
let A := ha i
rw [← ha'] at A
simp at A
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
simp
2024-08-01 10:02:36 +02:00
exact h₀
2024-07-31 14:54:41 +02:00
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply h₁f.continuous.continuousAt
let A := continuous_circleMap 0 1
apply A.continuousAt
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply continuous_finset_sum
2024-08-01 10:02:36 +02:00
intro i _
2024-07-31 14:54:41 +02:00
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
let A := ha i
rw [← ha'] at A
simp at A
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop