Update holomorphic_JensenFormula.lean

This commit is contained in:
Stefan Kebekus 2024-08-09 09:46:37 +02:00
parent 17705601c2
commit 6ab6e6e6a9

View File

@ -1,47 +1,72 @@
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
lemma l₀
{x₁ x₂ : } :
(circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
lemma l₀ {x₁ x₂ : } : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
dsimp [circleMap]
simp
rw [add_mul, Complex.exp_add]
lemma l₁ {x : } : ‖circleMap 0 1 x‖ = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
lemma l₂ {x : } : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
calc ‖(circleMap 0 1 x) - a‖
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by
exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
rw [l₁]
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
rw [mul_sub]
_ = ‖(circleMap 0 1 0) - (circleMap 0 1 (-x)) * a‖ := by
rw [l₀]
simp
_ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
congr
dsimp [circleMap]
simp
lemma int₀
{a : }
(ha : a ∈ Metric.ball 0 1) :
∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
have {x : } : ‖(circleMap 0 1 x) - a‖ = ‖(circleMap 0 1 x) - a‖ := by
calc ‖(circleMap 0 1 x) - a‖
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
have : ‖(circleMap 0 1 (-x))‖ = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
rw [this]
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
rw [mul_sub]
_ =
sorry
simp_rw [l₂]
have {x : } : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
conv =>
left
arg 1
intro x
rw [← this]
rw [this]
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
have {x : } : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
simp
dsimp [f₁]
have hf : ∀ x ∈ Metric.ball 0 2, HarmonicAt F x := by sorry
let F := fun z ↦ Real.log ‖1 - z * a‖
sorry
have hf : ∀ x ∈ Metric.ball 0 2 , HarmonicAt F x := by
sorry
let A := harmonic_meanValue 2 1 Real.zero_lt_one one_lt_two hf
dsimp [F] at A
simp at A
exact A
theorem jensen_case_R_eq_one