Writing…
This commit is contained in:
parent
3699e96e96
commit
9b77c8ed7e
|
@ -24,3 +24,5 @@ Patakfalvi
|
||||||
Zsolt
|
Zsolt
|
||||||
Kebekus
|
Kebekus
|
||||||
Albanese
|
Albanese
|
||||||
|
Hirzebruch
|
||||||
|
multiplicitity
|
||||||
|
|
63
01-intro.tex
63
01-intro.tex
|
@ -8,15 +8,15 @@
|
||||||
\section{The $\cC$-Albanese morphism in the presence of rational curves}
|
\section{The $\cC$-Albanese morphism in the presence of rational curves}
|
||||||
\subversionInfo
|
\subversionInfo
|
||||||
|
|
||||||
|
\begin{setting}\label{set:1}
|
||||||
|
Let $X$ be a compact Kähler manifold and let $x \in X$ be any point. Assume
|
||||||
|
that an Albanese of the $\cC$-pair $(X,0)$ exists.
|
||||||
|
\end{setting}
|
||||||
|
|
||||||
\begin{thm}\label{thm:1}%
|
\begin{thm}\label{thm:1}%
|
||||||
Let $X$ be a projective manifold and let $x \in X$ be any point. If $C \subset
|
In Setting~\ref{set:1}, let $C \subset X$ be a rational curve. Then, the
|
||||||
X$ is a rational curve, then the Albanese morphism\watchOut{Stefan 03Jun24:
|
Albanese morphism $\alb_x(X,0) : X \to \Alb_x(X,0)$ maps the curve $C$ to a
|
||||||
Need to make assumptions to ensure that the Albanese exists.} of the
|
point.
|
||||||
$\cC$-pair $(X,0)$,
|
|
||||||
\[
|
|
||||||
\alb_x(X,0) : X \to \Alb_x(X,0),
|
|
||||||
\]
|
|
||||||
maps the curve $C$ to a point.
|
|
||||||
\end{thm}
|
\end{thm}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
The normalization of $C$ yields a diagram
|
The normalization of $C$ yields a diagram
|
||||||
|
@ -49,6 +49,53 @@
|
||||||
The claim follows immediately once we observe that $\Alb_0(\bP¹,0)$ is a point.
|
The claim follows immediately once we observe that $\Alb_0(\bP¹,0)$ is a point.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{cor}\label{cor:3}%
|
||||||
|
In Setting~\ref{set:1}, assume that $X$ is rationally connected. Then,
|
||||||
|
$\Alb_x(X,0)$ is a point.
|
||||||
|
\end{cor}
|
||||||
|
|
||||||
|
\begin{example}[Theorem~\ref{thm:1} is wrong for singular spaces]
|
||||||
|
Let $\pi : S \to \bP¹$ be one of the rational ruled ``Hirzebruch'' surfaces.
|
||||||
|
Let $C_S \subset S$ be any section. Construct a commutative diagram as
|
||||||
|
follows,
|
||||||
|
\[
|
||||||
|
\begin{tikzcd}[column sep=2cm]
|
||||||
|
& S_2 \ar[r, "\alpha\text{, blow-up}"] \ar[d, "\gamma\text{, contraction}"'] & S_1 \ar[r, "\beta\text{, blow-up}"] & S \ar[r, "\pi\text{, fibre bundle}"] & \bP¹ \ar[d, equal] \\
|
||||||
|
C \ar[r, "\iota"'] & X \ar[rrr, "\rho\text{, rational fibration}"'] & & & \bP¹.
|
||||||
|
\end{tikzcd}
|
||||||
|
\]
|
||||||
|
\begin{itemize}
|
||||||
|
\item Choose four distinct points $x_1, …, x_4 \in \bP¹$.
|
||||||
|
\item Choose four points $s_\bullet \in \pi^{-1}(x_\bullet) \in \bP¹$.
|
||||||
|
\item Let $\beta$ be the blow-up up of the four points $s_\bullet$.
|
||||||
|
\item The surface $S_1$ is smooth. The fibres $F_{1\bullet} :=
|
||||||
|
(\pi\circ\beta)^{-1}(x_\bullet)$ are reduced. Each fibre $F_{1\bullet}$
|
||||||
|
consists of two $(-1)$-curves, meeting transversally in a point
|
||||||
|
$s_{1\bullet}$.
|
||||||
|
\item Let $\alpha$ be the blow-up up of the four points $s_{1\bullet}$.
|
||||||
|
\item The surface $S_2$ is smooth but the fibres $F_{2\bullet} :=
|
||||||
|
(\pi\circ\beta\circ\alpha)^{-1}(x_\bullet)$ are no longer reduced. Each
|
||||||
|
fibre $F_{2\bullet}$ consists of two reduced $(-1)$-curves and one
|
||||||
|
$(-2)$-curve $F'_{2\bullet}$ of multiplicity two.
|
||||||
|
\item Let $\gamma$ be the contraction of the four points disjoint
|
||||||
|
$(-2)$-curves $F'_{2\bullet}$. The map $\pi\circ\beta\circ\alpha$ factors
|
||||||
|
via the contraction map because we contract fibre components only.
|
||||||
|
\item Let $C \subset X$ be the strict transform of the section $C_S$.
|
||||||
|
\end{itemize}
|
||||||
|
The surface $X$ is then singular, with four quotient singularities of type
|
||||||
|
$A_1$ over the $x_\bullet$. All fibres of $\rho$ are supported on smooth
|
||||||
|
rational curves, but the fibres over $x_\bullet$ have multiplicitity two and
|
||||||
|
pass through the singularities.
|
||||||
|
|
||||||
|
The criterion for $\cC$-morphism spelled out in \cite{orbiAlb1} quickly
|
||||||
|
implies that $\rho$ is a $\cC$-morphism between the pair $(X,0)$ and the torus
|
||||||
|
quotient $(\bP¹, \frac{1}{2}·\sum_i x_i)$. The universal property of the
|
||||||
|
Albanese immediately implies that the map $\rho$ factors via $\alb_x(X,0)$. A
|
||||||
|
more detailed analysis, applying Theorem~\ref{thm:1} to the smooth fibres of
|
||||||
|
$\rho$, shows that the torus quotient $(\bP¹, \frac{1}{2}·\sum_i x_i)$ is
|
||||||
|
equal to the Albanese and that $\rho$ is the Albanese map.
|
||||||
|
\end{example}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.}
|
\item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
Loading…
Reference in New Issue