orbiAlb4/01-intro.tex

173 lines
7.0 KiB
TeX

%
% Do not edit the following line. The text is automatically updated by
% subversion.
%
\svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $}
\selectlanguage{british}
\section{The $\cC$-Albanese morphism in the presence of rational curves}
\subversionInfo
\begin{setting}\label{set:1}
Let $X$ be a compact Kähler manifold and let $x \in X$ be any point. Assume
that an Albanese of the $\cC$-pair $(X,0)$ exists.
\end{setting}
\begin{thm}\label{thm:1}%
In Setting~\ref{set:1}, let $C \subset X$ be a rational curve. Then, the
Albanese morphism $\alb_x(X,0) : X \to \Alb_x(X,0)$ maps the curve $C$ to a
point.
\end{thm}
\begin{proof}
The normalization of $C$ yields a diagram
\[
\begin{tikzcd}[column sep=2cm]
\bP¹ \ar[r, "n\text{, normalization}"'] \ar[rr, bend left=15, "\eta"] & C \ar[r, "\text{inclusion}"'] & X.
\end{tikzcd}
\]
Consider the point $y := n(0_{\bP¹}) \in X$. It follows from the universal
property of the Albanese that the Albanese varieties $\Alb_x(X,0)$ and
$\Alb_y(X,0)$ are isomorphic. To be more precise, there exists a unique Lie
group isomorphism $t$ that makes the following diagram commute,
\[
\begin{tikzcd}[column sep=2cm]
X \ar[r, "\alb_x(X{,}0)"] \ar[d, equal] & \Alb_x(X,0) \ar[d, two heads, hook, "t"] \\
X \ar[r, "\alb_y(X{,}0)"'] & \Alb_y(X,0).
\end{tikzcd}
\]
We may therefore assume without loss of generality that $x = y = n(0_{\bP¹})$.
Given that $X$ is smooth, recall from \cite{orbiAlb1} that $\eta$ is a
$\cC$-morphism, between $\cC$-pairs $(\bP¹, 0)$ and $(X, 0)$. Invoking the
universal property of the Albanese once more, we find an analogous diagram
\[
\begin{tikzcd}[column sep=2cm]
\bP¹ \ar[r, "\alb_0(\bP¹{,}0)"] \ar[d, equal] & \Alb_0(\bP¹,0) \ar[d] \\
X \ar[r, "\alb_x(X{,}0)"'] & \Alb_x(X,0).
\end{tikzcd}
\]
The claim follows immediately once we observe that $\Alb_0(\bP¹,0)$ is a point.
\end{proof}
\begin{cor}\label{cor:3}%
In Setting~\ref{set:1}, assume that $X$ is rationally connected. Then,
$\Alb_x(X,0)$ is a point.
\end{cor}
\begin{example}[Theorem~\ref{thm:1} is wrong for singular spaces]
Let $\pi : S \to \bP¹$ be one of the rational ruled ``Hirzebruch'' surfaces.
Let $C_S \subset S$ be any section. Construct a commutative diagram as
follows,
\[
\begin{tikzcd}[column sep=2cm]
& S_2 \ar[r, "\alpha\text{, blow-up}"] \ar[d, "\gamma\text{, contraction}"'] & S_1 \ar[r, "\beta\text{, blow-up}"] & S \ar[r, "\pi\text{, fibre bundle}"] & \bP¹ \ar[d, equal] \\
C \ar[r, "\iota"'] & X \ar[rrr, "\rho\text{, rational fibration}"'] & & & \bP¹.
\end{tikzcd}
\]
\begin{itemize}
\item Choose four distinct points $x_1, …, x_4 \in \bP¹$.
\item Choose four points $s_\bullet \in \pi^{-1}(x_\bullet) \in \bP¹$.
\item Let $\beta$ be the blow-up up of the four points $s_\bullet$.
\item The surface $S_1$ is smooth. The fibres $F_{1\bullet} :=
(\pi\circ\beta)^{-1}(x_\bullet)$ are reduced. Each fibre $F_{1\bullet}$
consists of two $(-1)$-curves, meeting transversally in a point
$s_{1\bullet}$.
\item Let $\alpha$ be the blow-up up of the four points $s_{1\bullet}$.
\item The surface $S_2$ is smooth but the fibres $F_{2\bullet} :=
(\pi\circ\beta\circ\alpha)^{-1}(x_\bullet)$ are no longer reduced. Each
fibre $F_{2\bullet}$ consists of two reduced $(-1)$-curves and one
$(-2)$-curve $F'_{2\bullet}$ of multiplicity two.
\item Let $\gamma$ be the contraction of the four points disjoint
$(-2)$-curves $F'_{2\bullet}$. The map $\pi\circ\beta\circ\alpha$ factors
via the contraction map because we contract fibre components only.
\item Let $C \subset X$ be the strict transform of the section $C_S$.
\end{itemize}
The surface $X$ is then singular, with four quotient singularities of type
$A_1$ over the $x_\bullet$. All fibres of $\rho$ are supported on smooth
rational curves, but the fibres over $x_\bullet$ have multiplicitity two and
pass through the singularities.
The criterion for $\cC$-morphism spelled out in \cite{orbiAlb1} quickly
implies that $\rho$ is a $\cC$-morphism between the pair $(X,0)$ and the torus
quotient $(\bP¹, \frac{1}{2}·\sum_i x_i)$. The universal property of the
Albanese immediately implies that the map $\rho$ factors via $\alb_x(X,0)$. A
more detailed analysis, applying Theorem~\ref{thm:1} to the smooth fibres of
$\rho$, shows that the torus quotient $(\bP¹, \frac{1}{2}·\sum_i x_i)$ is
equal to the Albanese and that $\rho$ is the Albanese map.
\end{example}
\begin{itemize}
\item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.}
\end{itemize}
\begin{cor}\label{cor:2}
Let $X$ be a projective manifold and let $x \in X$ be any point. Let $\mu : X
\to Y$ be a morphism to a normal projective variety. If all fibres of $\mu$
are rationally chain connected, then $\alb_x(X,0)$ factors via $\mu$,
\[
\begin{tikzcd}
X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb_x(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb_x(X,0).
\end{tikzcd}
\]
\end{cor}
\begin{rem}
---
\begin{itemize}
\item Corollary~\ref{cor:2} does not equip $Y$ with the structure of a $\cC$-pair.
\item Corollary~\ref{cor:2} does not assume that $\mu$ is a morphism of $\cC$-pairs.
\item Even if $\mu$ is a morphism of $\cC$-pairs, Corollary~\ref{cor:2}
does not claim that $\beta$ is a morphism of $\cC$-pairs.
\item Corollary~\ref{cor:2} neither gives a morphism between $\Alb_x(X,0)$
and $\Alb_{\mu(x)}(Y,0)$ nor does it claim that these are isomorphic.
\end{itemize}
\end{rem}
\begin{itemize}
\item \todo{Kummer K3s are nice examples where the Albanese grows when we
contract rational curves.}
\item \todo{Want more examples to showcase all the things that can go wrong.}
\item \todo{Corollary~\ref{cor:2} implies that the $\cC$-Albanese map factors
via the MRC fibration of $X$, and via any map from $X$ to one of its minimal
models. This should be exploitable in geometrically meaningful situations.}
\end{itemize}
\todo{There are settings where the factorization of Corollary~\ref{cor:2} is a
factorization into morphisms of $\cC$-pairs.}
\begin{thm}
Birational projective manifolds $X$ and $Y$ have canonically isomorphic
$\cC$-Albanese varieties.
\end{thm}
\begin{proof}
\todo{PENDING}
\end{proof}
\begin{thm}
Let $X$ be a projective manifold and let $x \in X$ be any point. Let $\mu : X
\to Y$ be an MRC fibration of $X$, where $Y$ is again a projective manifold.
Then, the $\cC$-pairs $\Alb_x(X,0)$ and $\Alb_{\mu(x)}(Y,0)$ are naturally
isomorphic.
\end{thm}
\begin{proof}
\todo{PENDING}
\end{proof}
\section{Examples}
\begin{itemize}
\item \todo{Discuss the Stoppino-example: general type, simply-connected,
augmented irregularity zero, but has a non-trivial $\cC$-Albanse.}
\end{itemize}
\section{The $\cC$-Albanese morphism for special manifolds}
\begin{itemize}
\item \todo{Discuss special surfaces.}
\item \todo{Figure out what we can say for special threefolds.}
\end{itemize}
% !TEX root = orbiAlb1