Working…
This commit is contained in:
parent
14da4f7ada
commit
4ed5112111
|
@ -9,4 +9,4 @@ agrees with notions from the literature in the smooth case, but it is better
|
|||
behaved in the singular setting, perhaps more conceptual, and has functorial
|
||||
properties that relate it to minimal model theory.
|
||||
|
||||
% !TEX root = orbiAlb1
|
||||
% !TEX root = orbiAlb4
|
||||
|
|
75
01-intro.tex
75
01-intro.tex
|
@ -9,18 +9,10 @@
|
|||
\section{The Albanese for compact manifolds}
|
||||
|
||||
\begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}%
|
||||
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
|
||||
Albanese of the pointed manifold $X$, $x \in X$ is a compact torus quotient
|
||||
$A$ and a pointed $\cC$-morphism
|
||||
\[
|
||||
a : X → A, \quad x \mapsto 0_A
|
||||
\]
|
||||
such that the following universal property holds: If $S$ is any other compact
|
||||
torus and if
|
||||
\[
|
||||
s : X → S, \quad x \mapsto 0_S
|
||||
\]
|
||||
is any pointed morphism, then there exists a unique morphism $c$ making the
|
||||
Let $X$ be a compact Kähler manifold. An Albanese of the manifold $X$ is a
|
||||
compact torus $A$ and a morphism $a : X → A$, such that the following
|
||||
universal property holds: If $S$ is any other compact torus and if $s : X →
|
||||
S$, is any morphism, then there exists a unique morphism $c$ making the
|
||||
following diagram commutative,
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
|
@ -30,16 +22,11 @@
|
|||
\end{defn}
|
||||
|
||||
\begin{rem}
|
||||
The morphism $c$ of Definition~\ref{def:1-1} maps $0_A$ to $0_S$ and is
|
||||
therefore a Lie group morphism.
|
||||
\end{rem}
|
||||
|
||||
\begin{rem}
|
||||
The universal property guarantees that the Albanese of
|
||||
If it exists, the universal property guarantees that the Albanese of
|
||||
Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak
|
||||
of ``the Albanese''. When precision is required, we denote the Albanese as
|
||||
\[
|
||||
\alb_x (X) : X → \Alb_x X.
|
||||
\alb (X) : X → \Alb X.
|
||||
\]
|
||||
\end{rem}
|
||||
|
||||
|
@ -49,17 +36,15 @@
|
|||
\todo{define torus quotient}
|
||||
|
||||
|
||||
\begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-2}%
|
||||
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
|
||||
Albanese of the pointed $\cC$-pair $(X,0)$, $x \in X$ is a pointed torus
|
||||
quotient $(A, Δ_A)$, $a \in A$ and a pointed $\cC$-morphism
|
||||
\begin{defn}[The $\cC$-Albanese of a compact pair with trivial boundary]\label{def:1-2}%
|
||||
Let $X$ be a compact Kähler manifold. An Albanese of the $\cC$-pair $(X,0)$
|
||||
is a torus quotient $(A, Δ_A)$ and a $\cC$-morphism
|
||||
\[
|
||||
a : (X,0) → (A, Δ_A), \quad x \mapsto a
|
||||
a : (X,0) → (A, Δ_A),
|
||||
\]
|
||||
such that the following universal property holds: If $(S, Δ_S)$, $s ∈ S$ is
|
||||
any other pointed torus quotient and if $s : (X,0) → (S, Δ_S)$ is any pointed
|
||||
$\cC$-morphism, then there exists a unique pointed $\cC$-morphism $c$ making
|
||||
the following diagram commutative,
|
||||
such that the following universal property holds: If $(S, Δ_S)$ is any other
|
||||
torus quotient and if $s : (X,0) → (S, Δ_S)$ is any $\cC$-morphism, then there
|
||||
exists a unique $\cC$-morphism $c$ making the following diagram commutative,
|
||||
\[
|
||||
\begin{tikzcd}[column sep=2.4cm]
|
||||
(X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S).
|
||||
|
@ -68,35 +53,17 @@
|
|||
\end{defn}
|
||||
|
||||
\begin{rem}
|
||||
The $\cC$-morphism $c$ of Definition~\ref{def:1-2} maps $a$ to $s$ and is
|
||||
therefore a morphism of pointed pairs.
|
||||
If it exists, the universal property guarantees that the Albanese of
|
||||
Definition~\ref{def:1-2} is unique up to unique morphism, allowing us to speak
|
||||
of ``the Albanese''. When precision is required, we denote the Albanese as
|
||||
\[
|
||||
\alb (X,0) : (X,0 → \Alb (X,0).
|
||||
\]
|
||||
\end{rem}
|
||||
|
||||
\begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-1}%
|
||||
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
|
||||
Albanese of $(X,0)$ is a pointed torus quotient $\bigl(\Alb_x(X,0),
|
||||
Δ_{\Alb_x(X,0)}\bigr)$, $a \in \Alb_x(X,0)$ and a $\cC$-morphism
|
||||
\[
|
||||
\alb_x(X,0) : (X,0) → \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr)
|
||||
\]
|
||||
such that the following holds.
|
||||
\begin{enumerate}
|
||||
\item The morphism $\alb_x(X,0)$ sends $x$ to $a$.
|
||||
|
||||
\item If $(S, Δ_S)$, $s ∈ S$ is any other pointed torus quotient and if $s :
|
||||
(X,0) → (S, Δ_S)$ is any $\cC$-morphism that sends $x$ to $s$, then $s$
|
||||
factors uniquely as
|
||||
\[
|
||||
\begin{tikzcd}[column sep=2.4cm]
|
||||
(X, 0) \ar[r, "\alb_x(X{,}D)"'] \ar[rr, "s", bend left=10] & \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) \ar[r, "∃!c"'] & (S, Δ_S).
|
||||
\end{tikzcd}
|
||||
\]
|
||||
\end{enumerate}
|
||||
\end{defn}
|
||||
|
||||
\begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} %
|
||||
Let $(X, D)$ be a $\cC$-pair where $X$ is compact Kähler. If $q⁺_{\Alb}(X,D)
|
||||
< ∞$, then an Albanese of $(X,D)$ exists.
|
||||
Let $X$ be a compact Kähler manifold. If $q^+_{\Alb}(X,0) < ∞$, then an
|
||||
Albanese of $(X,0)$ exists.
|
||||
\end{thm}
|
||||
|
||||
|
||||
|
|
|
@ -5,34 +5,14 @@
|
|||
\svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $}
|
||||
\selectlanguage{british}
|
||||
|
||||
\section{The $\cC$-Albanese morphism in the presence of rational curves}
|
||||
\section{The Albanese morphism in the presence of rational curves}
|
||||
\subversionInfo
|
||||
|
||||
\begin{setting}\label{set:1}
|
||||
Let $X$ be a compact Kähler manifold and let $x \in X$ be any point. Assume
|
||||
that an Albanese of the $\cC$-pair $(X,0)$ exists.
|
||||
\begin{setting}\label{set:1}%
|
||||
Let $X$ be a compact Kähler manifold. Assume that an Albanese of the
|
||||
$\cC$-pair $(X,0)$ exists.
|
||||
\end{setting}
|
||||
|
||||
\begin{rem}[Mapping subvarieties to a point]
|
||||
Assume Setting~\ref{set:1}. If $x_1, x_2 \in X$ are any two points, it
|
||||
follows from the universal property of the Albanese that the varieties
|
||||
$\Alb_{x_1}(X,0)$ and $\Alb_{x_2}(X,0)$ are isomorphic. To be more precise,
|
||||
there exists a unique Lie group isomorphism $t$ that makes the following
|
||||
diagram commute,
|
||||
\[
|
||||
\begin{tikzcd}[column sep=2cm]
|
||||
X \ar[r, "\alb_{x_1}(X{,}0)"] \ar[d, equal] & \Alb_{x_1}(X,0) \ar[d, two heads, hook, "t_{x_1x_2}"] \\
|
||||
X \ar[r, "\alb_{x_2}(X{,}0)"'] & \Alb_{x_2}(X,0).
|
||||
\end{tikzcd}
|
||||
\]
|
||||
If $Y \subseteq X$ is any subvariety, then the following two statements are equivalent.
|
||||
\begin{itemize}
|
||||
\item The morphism $\alb_{x_1}(X,0)$ maps $Y$ to a point.
|
||||
\item The morphism $\alb_{x_2}(X,0)$ maps $Y$ to a point.
|
||||
\end{itemize}
|
||||
If the conditions are satisfied, then say that \emph{the Albanese morphism of
|
||||
$(X,0)$ maps $Y$ to a point}.
|
||||
\end{rem}
|
||||
|
||||
\begin{thm}\label{thm:1}%
|
||||
Assume Setting~\ref{set:1}. Then, the Albanese morphism of $(X,0)$ maps all
|
||||
|
@ -50,22 +30,42 @@
|
|||
|
||||
Given that $X$ is smooth, recall from \cite{orbiAlb1} that $\eta$ is a
|
||||
$\cC$-morphism, between $\cC$-pairs $(\bP¹, 0)$ and $(X, 0)$. Since
|
||||
$\Alb_0(\bP¹,0)$ exists, the universal property of the Albanese yields a
|
||||
$\Alb(\bP¹,0)$ exists, the universal property of the Albanese yields a
|
||||
diagram
|
||||
\[
|
||||
\begin{tikzcd}[column sep=2cm]
|
||||
\bP¹ \ar[r, "\alb_0(\bP¹{,}0)"] \ar[d, "n"'] & \Alb_0(\bP¹,0) \ar[d] \\
|
||||
X \ar[r, "\alb_{x'}(X{,}0)"'] & \Alb_{x'}(X,0).
|
||||
\bP¹ \ar[r, "\alb(\bP¹{,}0)"] \ar[d, "n"'] & \Alb(\bP¹,0) \ar[d] \\
|
||||
X \ar[r, "\alb(X{,}0)"'] & \Alb(X,0).
|
||||
\end{tikzcd}
|
||||
\]
|
||||
The claim follows immediately once we observe that $\Alb_0(\bP¹,0)$ is a point.
|
||||
The claim follows immediately once we observe that $\Alb(\bP¹,0)$ is a point.
|
||||
\end{proof}
|
||||
|
||||
\begin{cor}\label{cor:2}%
|
||||
In Setting~\ref{set:1}, let $\mu : X \to Y$ be a morphism to a normal
|
||||
projective variety. If all fibres of $\mu$ are rationally chain connected,
|
||||
then $\alb(X,0)$ factors via $\mu$,
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb(X,0).
|
||||
\end{tikzcd}
|
||||
\]
|
||||
\end{cor}
|
||||
|
||||
\begin{cor}\label{cor:3}%
|
||||
In Setting~\ref{set:1}, assume that $X$ is rationally connected. Then,
|
||||
$\Alb_x(X,0)$ is a point.
|
||||
$\Alb(X,0)$ is a point.
|
||||
\end{cor}
|
||||
|
||||
\todo{
|
||||
\begin{itemize}
|
||||
\item Factorization via minimal model.
|
||||
\item Independence of bimeromorphic model.
|
||||
\item Factorization via MRC quotient.
|
||||
\end{itemize}
|
||||
|
||||
}
|
||||
|
||||
\begin{example}[Theorem~\ref{thm:1} is wrong for singular spaces]
|
||||
Let $\pi : S \to \bP¹$ be one of the rational ruled ``Hirzebruch'' surfaces.
|
||||
Let $C_S \subset S$ be any section. Construct a commutative diagram as
|
||||
|
@ -112,17 +112,6 @@
|
|||
\item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.}
|
||||
\end{itemize}
|
||||
|
||||
\begin{cor}\label{cor:2}
|
||||
Let $X$ be a projective manifold and let $x \in X$ be any point. Let $\mu : X
|
||||
\to Y$ be a morphism to a normal projective variety. If all fibres of $\mu$
|
||||
are rationally chain connected, then $\alb_x(X,0)$ factors via $\mu$,
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb_x(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb_x(X,0).
|
||||
\end{tikzcd}
|
||||
\]
|
||||
\end{cor}
|
||||
|
||||
\begin{rem}
|
||||
---
|
||||
\begin{itemize}
|
||||
|
|
Loading…
Reference in New Issue