54 lines
1.5 KiB
Plaintext
54 lines
1.5 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
theorem MeromorphicOn.decompose
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁U : IsConnected U)
|
||
(h₂U : IsCompact U)
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) :
|
||
∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U)
|
||
∧ (∀ z ∈ U, g z ≠ 0)
|
||
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by
|
||
|
||
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
||
have h₁g₁ : MeromorphicOn g₁ U := by sorry
|
||
let g := h₁g₁.makeStronglyMeromorphicOn
|
||
have h₁g : MeromorphicOn g U := by sorry
|
||
have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by sorry
|
||
have h₃g : StronglyMeromorphicOn g U := by sorry
|
||
have h₄g : AnalyticOnNhd ℂ g U := by
|
||
intro z hz
|
||
apply StronglyMeromorphicAt.analytic (h₃g z hz)
|
||
rw [h₂g ⟨z, hz⟩]
|
||
use g
|
||
constructor
|
||
· exact h₄g
|
||
· constructor
|
||
· intro z hz
|
||
rw [← (h₄g z hz).order_eq_zero_iff]
|
||
|
||
have A := (h₄g z hz).meromorphicAt_order
|
||
rw [h₂g ⟨z, hz⟩] at A
|
||
|
||
have t₀ : (0 : WithTop ℤ) = WithTop.map Nat.cast (0 : WithTop ℕ) := by
|
||
sorry
|
||
--rw [← this] at A
|
||
|
||
rw [WithTop.map_coe] at A
|
||
|
||
sorry
|
||
· intro z hz
|
||
|
||
sorry
|