import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral theorem MeromorphicOn.decompose {f : ℂ → ℂ} {U : Set ℂ} (h₁U : IsConnected U) (h₂U : IsCompact U) (h₁f : MeromorphicOn f U) (h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) : ∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U) ∧ (∀ z ∈ U, g z ≠ 0) ∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p)) have h₁g₁ : MeromorphicOn g₁ U := by sorry let g := h₁g₁.makeStronglyMeromorphicOn have h₁g : MeromorphicOn g U := by sorry have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by sorry have h₃g : StronglyMeromorphicOn g U := by sorry have h₄g : AnalyticOnNhd ℂ g U := by intro z hz apply StronglyMeromorphicAt.analytic (h₃g z hz) rw [h₂g ⟨z, hz⟩] use g constructor · exact h₄g · constructor · intro z hz rw [← (h₄g z hz).order_eq_zero_iff] have A := (h₄g z hz).meromorphicAt_order rw [h₂g ⟨z, hz⟩] at A have t₀ : (0 : WithTop ℤ) = WithTop.map Nat.cast (0 : WithTop ℕ) := by sorry --rw [← this] at A rw [WithTop.map_coe] at A sorry · intro z hz sorry