271 lines
8.6 KiB
Plaintext
271 lines
8.6 KiB
Plaintext
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||
|
||
|
||
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||
variable (𝕜)
|
||
|
||
|
||
noncomputable def partialDeriv : E → (E → F) → (E → F) :=
|
||
fun v ↦ (fun f ↦ (fun w ↦ fderiv 𝕜 f w v))
|
||
|
||
|
||
theorem partialDeriv_smul₁ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
|
||
unfold partialDeriv
|
||
conv =>
|
||
left
|
||
intro w
|
||
rw [map_smul]
|
||
|
||
|
||
theorem partialDeriv_add₁ {f : E → F} {v₁ v₂ : E} : partialDeriv 𝕜 (v₁ + v₂) f = (partialDeriv 𝕜 v₁ f) + (partialDeriv 𝕜 v₂ f) := by
|
||
unfold partialDeriv
|
||
conv =>
|
||
left
|
||
intro w
|
||
rw [map_add]
|
||
|
||
|
||
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||
unfold partialDeriv
|
||
funext w
|
||
have : a • f = fun y ↦ a • f y := by rfl
|
||
rw [this]
|
||
by_cases ha : a = 0
|
||
· rw [ha]
|
||
simp
|
||
· by_cases hf : DifferentiableAt 𝕜 f w
|
||
· rw [fderiv_const_smul hf]
|
||
simp
|
||
· have : ¬DifferentiableAt 𝕜 (fun y => a • f y) w := by
|
||
by_contra contra
|
||
let ZZ := DifferentiableAt.const_smul contra a⁻¹
|
||
have : (fun y => a⁻¹ • a • f y) = f := by
|
||
funext i
|
||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
|
||
simp
|
||
rw [this] at ZZ
|
||
exact hf ZZ
|
||
simp
|
||
rw [fderiv_zero_of_not_differentiableAt hf]
|
||
rw [fderiv_zero_of_not_differentiableAt this]
|
||
simp
|
||
|
||
|
||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||
unfold partialDeriv
|
||
|
||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||
rw [this]
|
||
conv =>
|
||
left
|
||
intro w
|
||
left
|
||
rw [fderiv_add (h₁ w) (h₂ w)]
|
||
|
||
|
||
theorem partialDeriv_add₂_differentiableAt
|
||
{f₁ f₂ : E → F}
|
||
{v : E}
|
||
{x : E}
|
||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||
(h₂ : DifferentiableAt 𝕜 f₂ x) :
|
||
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||
|
||
unfold partialDeriv
|
||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||
rw [this]
|
||
rw [fderiv_add h₁ h₂]
|
||
rfl
|
||
|
||
|
||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||
unfold partialDeriv
|
||
|
||
conv =>
|
||
left
|
||
intro w
|
||
left
|
||
rw [fderiv.comp w (ContinuousLinearMap.differentiableAt l) (h w)]
|
||
simp
|
||
rfl
|
||
|
||
|
||
theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x : E} (h : DifferentiableAt 𝕜 f x) : (partialDeriv 𝕜 v (l ∘ f)) x = (l ∘ partialDeriv 𝕜 v f) x:= by
|
||
unfold partialDeriv
|
||
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
|
||
simp
|
||
|
||
|
||
theorem partialDeriv_compCLE {f : E → F} {l : F ≃L[𝕜] G} {v : E} : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||
funext x
|
||
by_cases hyp : DifferentiableAt 𝕜 f x
|
||
· let lCLM : F →L[𝕜] G := l
|
||
suffices shyp : partialDeriv 𝕜 v (lCLM ∘ f) x = (lCLM ∘ partialDeriv 𝕜 v f) x from by tauto
|
||
apply partialDeriv_compContLinAt
|
||
exact hyp
|
||
· unfold partialDeriv
|
||
rw [fderiv_zero_of_not_differentiableAt]
|
||
simp
|
||
rw [fderiv_zero_of_not_differentiableAt]
|
||
simp
|
||
exact hyp
|
||
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
|
||
exact hyp
|
||
|
||
|
||
theorem partialDeriv_contDiff {n : ℕ} {f : E → F} (h : ContDiff 𝕜 (n + 1) f) : ∀ v : E, ContDiff 𝕜 n (partialDeriv 𝕜 v f) := by
|
||
unfold partialDeriv
|
||
intro v
|
||
|
||
let A := (contDiff_succ_iff_fderiv.1 h).right
|
||
simp at A
|
||
|
||
have : (fun w => (fderiv 𝕜 f w) v) = (fun f => f v) ∘ (fun w => (fderiv 𝕜 f w)) := by
|
||
rfl
|
||
|
||
rw [this]
|
||
refine ContDiff.comp ?hg A
|
||
refine ContDiff.of_succ ?hg.h
|
||
refine ContDiff.clm_apply ?hg.h.hf ?hg.h.hg
|
||
exact contDiff_id
|
||
exact contDiff_const
|
||
|
||
|
||
theorem partialDeriv_contDiffAt {n : ℕ} {f : E → F} {x : E} (h : ContDiffAt 𝕜 (n + 1) f x) : ∀ v : E, ContDiffAt 𝕜 n (partialDeriv 𝕜 v f) x := by
|
||
|
||
unfold partialDeriv
|
||
intro v
|
||
|
||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||
{
|
||
toFun := fun l ↦ l v
|
||
map_add' := by simp
|
||
map_smul' := by simp
|
||
}
|
||
|
||
have : (fun w => (fderiv 𝕜 f w) v) = eval_at_v ∘ (fun w => (fderiv 𝕜 f w)) := by
|
||
rfl
|
||
rw [this]
|
||
|
||
apply ContDiffAt.continuousLinearMap_comp
|
||
-- ContDiffAt 𝕜 (↑n) (fun w => fderiv 𝕜 f w) x
|
||
apply ContDiffAt.fderiv_right h
|
||
rfl
|
||
|
||
|
||
lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :
|
||
fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
|
||
|
||
unfold partialDeriv
|
||
rw [fderiv_clm_apply]
|
||
· simp
|
||
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
|
||
· simp
|
||
|
||
|
||
theorem partialDeriv_eventuallyEq {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[nhds x] f₂) : ∀ v : E, partialDeriv 𝕜 v f₁ x = partialDeriv 𝕜 v f₂ x := by
|
||
unfold partialDeriv
|
||
rw [Filter.EventuallyEq.fderiv_eq h]
|
||
exact fun v => rfl
|
||
|
||
|
||
theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[nhds x] f₂) : ∀ v : E, partialDeriv 𝕜 v f₁ =ᶠ[nhds x] partialDeriv 𝕜 v f₂ := by
|
||
unfold partialDeriv
|
||
intro v
|
||
let A : fderiv 𝕜 f₁ =ᶠ[nhds x] fderiv 𝕜 f₂ := Filter.EventuallyEq.fderiv h
|
||
apply Filter.EventuallyEq.comp₂
|
||
exact A
|
||
simp
|
||
|
||
|
||
section restrictScalars
|
||
|
||
theorem partialDeriv_smul'₂
|
||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||
[IsScalarTower 𝕜 𝕜' F]
|
||
{f : E → F} {a : 𝕜'} {v : E} :
|
||
partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||
|
||
funext w
|
||
by_cases ha : a = 0
|
||
· unfold partialDeriv
|
||
have : a • f = fun y ↦ a • f y := by rfl
|
||
rw [this, ha]
|
||
simp
|
||
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
|
||
let smulCLM : F ≃L[𝕜] F :=
|
||
{
|
||
toFun := fun x ↦ a • x
|
||
map_add' := fun x y => DistribSMul.smul_add a x y
|
||
map_smul' := fun m x => (smul_comm ((RingHom.id 𝕜) m) a x).symm
|
||
invFun := fun x ↦ a⁻¹ • x
|
||
left_inv := by
|
||
intro x
|
||
simp
|
||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
|
||
right_inv := by
|
||
intro x
|
||
simp
|
||
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
|
||
continuous_toFun := continuous_const_smul a
|
||
continuous_invFun := continuous_const_smul a⁻¹
|
||
}
|
||
|
||
have : a • f = smulCLM ∘ f := by tauto
|
||
rw [this]
|
||
rw [partialDeriv_compCLE]
|
||
tauto
|
||
|
||
|
||
theorem partialDeriv_restrictScalars
|
||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||
[IsScalarTower 𝕜 𝕜' E]
|
||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||
[IsScalarTower 𝕜 𝕜' F]
|
||
{f : E → F} {v : E} :
|
||
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
|
||
intro hf
|
||
unfold partialDeriv
|
||
funext x
|
||
rw [(hf x).fderiv_restrictScalars 𝕜]
|
||
simp
|
||
|
||
|
||
theorem partialDeriv_comm
|
||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
{f : E → F} (h : ContDiff ℝ 2 f) :
|
||
∀ v₁ v₂ : E, partialDeriv ℝ v₁ (partialDeriv ℝ v₂ f) = partialDeriv ℝ v₂ (partialDeriv ℝ v₁ f) := by
|
||
|
||
intro v₁ v₂
|
||
funext z
|
||
|
||
have derivSymm :
|
||
(fderiv ℝ (fun w => fderiv ℝ f w) z) v₁ v₂ = (fderiv ℝ (fun w => fderiv ℝ f w) z) v₂ v₁ := by
|
||
|
||
let f' := fderiv ℝ f
|
||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||
intro y
|
||
exact DifferentiableAt.hasFDerivAt ((h.differentiable one_le_two) y)
|
||
|
||
let f'' := (fderiv ℝ f' z)
|
||
have h₁ : HasFDerivAt f' f'' z := by
|
||
apply DifferentiableAt.hasFDerivAt
|
||
apply (contDiff_succ_iff_fderiv.1 h).right.differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||
|
||
apply second_derivative_symmetric h₀ h₁ v₁ v₂
|
||
|
||
rw [← partialDeriv_fderiv ℝ h z v₂ v₁]
|
||
rw [derivSymm]
|
||
rw [partialDeriv_fderiv ℝ h z v₁ v₂]
|