working…
This commit is contained in:
parent
7a1359308e
commit
d6e8f57019
@ -269,36 +269,26 @@ theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpe
|
||||
unfold Complex.laplace
|
||||
intro z hz
|
||||
simp
|
||||
have : DifferentiableAt ℂ f z := by
|
||||
have : ∀ z ∈ s, partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
sorry
|
||||
let ZZ := h z hz
|
||||
rw [CauchyRiemann₅ this]
|
||||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
simp
|
||||
refine mem_nhds_iff.mpr ?_
|
||||
use s
|
||||
constructor
|
||||
· intro x hx
|
||||
simp
|
||||
apply CauchyRiemann₅
|
||||
apply DifferentiableOn.differentiableAt h
|
||||
exact IsOpen.mem_nhds hs hx
|
||||
· constructor
|
||||
· exact hs
|
||||
· exact hz
|
||||
rw [partialDeriv_eventuallyEq ℝ this Complex.I]
|
||||
rw [partialDeriv_smul'₂]
|
||||
|
||||
-- This lemma says that partial derivatives commute with complex scalar
|
||||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||||
intro v s g hg
|
||||
|
||||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||||
-- horrible, there must be better ways to do that.
|
||||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||||
{
|
||||
toFun := fun x ↦ s • x
|
||||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||||
cont := continuous_const_smul s
|
||||
}
|
||||
|
||||
-- Bring the goal into a form that is recognized by
|
||||
-- partialDeriv_compContLin.
|
||||
have : s • g = sMuls ∘ g := by rfl
|
||||
rw [this]
|
||||
|
||||
rw [partialDeriv_compContLin ℝ hg]
|
||||
rfl
|
||||
|
||||
rw [this]
|
||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||
rw [CauchyRiemann₄ h]
|
||||
rw [this]
|
||||
@ -399,7 +389,6 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||
exact h₁ z
|
||||
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphic_is_harmonic
|
||||
{f : ℂ → ℂ}
|
||||
(h₁ : Differentiable ℂ f)
|
||||
|
@ -94,7 +94,7 @@ theorem laplace_add_ContDiffOn
|
||||
rw [add_comm]
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
intro v
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_smul₂]
|
||||
@ -103,11 +103,6 @@ theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Compl
|
||||
rw [partialDeriv_smul₂]
|
||||
simp
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
|
@ -30,16 +30,30 @@ theorem partialDeriv_add₁ {f : E → F} {v₁ v₂ : E} : partialDeriv 𝕜 (v
|
||||
rw [map_add]
|
||||
|
||||
|
||||
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
|
||||
funext w
|
||||
have : a • f = fun y ↦ a • f y := by rfl
|
||||
rw [this]
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [fderiv_const_smul (h w)]
|
||||
by_cases ha : a = 0
|
||||
· rw [ha]
|
||||
simp
|
||||
· by_cases hf : DifferentiableAt 𝕜 f w
|
||||
· rw [fderiv_const_smul hf]
|
||||
simp
|
||||
· have : ¬DifferentiableAt 𝕜 (fun y => a • f y) w := by
|
||||
by_contra contra
|
||||
let ZZ := DifferentiableAt.const_smul contra a⁻¹
|
||||
have : (fun y => a⁻¹ • a • f y) = f := by
|
||||
funext i
|
||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
|
||||
simp
|
||||
rw [this] at ZZ
|
||||
exact hf ZZ
|
||||
simp
|
||||
rw [fderiv_zero_of_not_differentiableAt hf]
|
||||
rw [fderiv_zero_of_not_differentiableAt this]
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
@ -59,8 +73,7 @@ theorem partialDeriv_add₂_differentiableAt
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x)
|
||||
:
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x) :
|
||||
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
@ -88,6 +101,23 @@ theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_compCLE {f : E → F} {l : F ≃L[𝕜] G} {v : E} : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
funext x
|
||||
by_cases hyp : DifferentiableAt 𝕜 f x
|
||||
· let lCLM : F →L[𝕜] G := l
|
||||
suffices shyp : partialDeriv 𝕜 v (lCLM ∘ f) x = (lCLM ∘ partialDeriv 𝕜 v f) x from by tauto
|
||||
apply partialDeriv_compContLinAt
|
||||
exact hyp
|
||||
· unfold partialDeriv
|
||||
rw [fderiv_zero_of_not_differentiableAt]
|
||||
simp
|
||||
rw [fderiv_zero_of_not_differentiableAt]
|
||||
simp
|
||||
exact hyp
|
||||
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
|
||||
exact hyp
|
||||
|
||||
|
||||
theorem partialDeriv_contDiff {n : ℕ} {f : E → F} (h : ContDiff 𝕜 (n + 1) f) : ∀ v : E, ContDiff 𝕜 n (partialDeriv 𝕜 v f) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
@ -155,15 +185,54 @@ theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[
|
||||
|
||||
section restrictScalars
|
||||
|
||||
variable (𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
variable {𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||||
variable [IsScalarTower 𝕜 𝕜' E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
variable [IsScalarTower 𝕜 𝕜' F]
|
||||
--variable {f : E → F}
|
||||
theorem partialDeriv_smul'₂
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
[IsScalarTower 𝕜 𝕜' F]
|
||||
{f : E → F} {a : 𝕜'} {v : E} :
|
||||
partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
|
||||
|
||||
theorem partialDeriv_restrictScalars {f : E → F} {v : E} :
|
||||
funext w
|
||||
by_cases ha : a = 0
|
||||
· unfold partialDeriv
|
||||
have : a • f = fun y ↦ a • f y := by rfl
|
||||
rw [this, ha]
|
||||
simp
|
||||
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
|
||||
let smulCLM : F ≃L[𝕜] F :=
|
||||
{
|
||||
toFun := fun x ↦ a • x
|
||||
map_add' := fun x y => DistribSMul.smul_add a x y
|
||||
map_smul' := fun m x => (smul_comm ((RingHom.id 𝕜) m) a x).symm
|
||||
invFun := fun x ↦ a⁻¹ • x
|
||||
left_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
|
||||
right_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
|
||||
continuous_toFun := continuous_const_smul a
|
||||
continuous_invFun := continuous_const_smul a⁻¹
|
||||
}
|
||||
|
||||
have : a • f = smulCLM ∘ f := by tauto
|
||||
rw [this]
|
||||
rw [partialDeriv_compCLE]
|
||||
tauto
|
||||
|
||||
|
||||
theorem partialDeriv_restrictScalars
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||||
[IsScalarTower 𝕜 𝕜' E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||
[IsScalarTower 𝕜 𝕜' F]
|
||||
{f : E → F} {v : E} :
|
||||
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
|
||||
intro hf
|
||||
unfold partialDeriv
|
||||
|
Loading…
Reference in New Issue
Block a user