nevanlinna/Nevanlinna/meromorphicOn.lean

56 lines
1.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicOn.open_of_order_eq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order = } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
rw [MeromorphicAt.order_eq_top_iff] at hz
rw [eventually_nhdsWithin_iff] at hz
rw [eventually_nhds_iff] at hz
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
let t :=
have : t ⊆ { u : U | (h₁f u.1 u.2).order = } := by
sorry
rw [← eventually_eventually_nhds] at hz
sorry
theorem MeromorphicOn.order_ne_top
{f : }
{U : Set }
(h₁U : IsConnected U)
(h₁f : MeromorphicOn f U) :
(∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ) ↔ (∀ z : U, (h₁f z.1 z.2).order = ) := by
constructor
· intro h
obtain ⟨h₁z₀, h₂z₀⟩ := h
intro hz
sorry
· intro h
obtain ⟨w, hw⟩ := h₁U.nonempty
use ⟨w, hw⟩
exact h ⟨w, hw⟩