import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral theorem MeromorphicOn.open_of_order_eq_top {f : ℂ → ℂ} {U : Set ℂ} (h₁f : MeromorphicOn f U) : IsOpen { u : U | (h₁f u.1 u.2).order = ⊤ } := by apply isOpen_iff_forall_mem_open.mpr intro z hz simp at hz rw [MeromorphicAt.order_eq_top_iff] at hz rw [eventually_nhdsWithin_iff] at hz rw [eventually_nhds_iff] at hz obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz let t := have : t ⊆ { u : U | (h₁f u.1 u.2).order = ⊤} := by sorry rw [← eventually_eventually_nhds] at hz sorry theorem MeromorphicOn.order_ne_top {f : ℂ → ℂ} {U : Set ℂ} (h₁U : IsConnected U) (h₁f : MeromorphicOn f U) : (∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order = ⊤) := by constructor · intro h obtain ⟨h₁z₀, h₂z₀⟩ := h intro hz sorry · intro h obtain ⟨w, hw⟩ := h₁U.nonempty use ⟨w, hw⟩ exact h ⟨w, hw⟩