nevanlinna/Nevanlinna/stronglyMeromorphic_JensenFormula.lean
Stefan Kebekus 22d2eae3f6 Working
2024-12-20 11:30:06 +01:00

439 lines
13 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.stronglyMeromorphicOn_eliminate
open Real
theorem jensen₀
{R : }
(hR : 0 < R)
(f : )
-- WARNING: Not needed. MeromorphicOn suffices
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
have h₁U : IsConnected (Metric.closedBall (0 : ) R) := by
constructor
· apply Metric.nonempty_closedBall.mpr
exact le_of_lt hR
· exact (convex_closedBall (0 : ) R).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ) R) :=
isCompact_closedBall 0 R
have h'₂f : ∃ u : (Metric.closedBall (0 : ) R), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
have h'₁f : StronglyMeromorphicAt f 0 := by
apply h₁f
simp
exact le_of_lt hR
have h''₂f : h'₁f.meromorphicAt.order = 0 := by
rwa [h'₁f.order_eq_zero_iff]
have h'''₂f : h₁f.meromorphicOn.divisor 0 = 0 := by
unfold MeromorphicOn.divisor
simp
tauto
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have h'₃f : ∀ s ∈ h₃f.toFinset, s ≠ 0 := by
by_contra hCon
push_neg at hCon
obtain ⟨s, h₁s, h₂s⟩ := hCon
rw [h₂s] at h₁s
simp at h₁s
tauto
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
intro x
contrapose
simp
intro hx
rw [hx]
simp
rw [finsum_eq_sum_of_support_subset _ h₄f]
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
intro u
contrapose
simp
intro hu
rw [hu]
simp
exact rfl
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
have h₁G {z : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
intro s
contrapose
simp
intro hs
rw [hs]
simp
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) R, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
rw [h₄F]
simp only [Pi.mul_apply, norm_mul]
simp only [Finset.prod_apply, norm_prod, norm_zpow]
rw [Real.log_mul]
rw [Real.log_prod]
simp_rw [Real.log_zpow]
dsimp only [G]
rw [finsum_eq_sum_of_support_subset _ h₁G]
--
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← (h₁f z h₁z).order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
-- Complex.abs (F z) ≠ 0
simp
exact h₃F ⟨z, h₁z⟩
--
rw [Finset.prod_ne_zero_iff]
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← (h₁f z h₁z).order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 R x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 R x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 R a)‖ = G (circleMap 0 R a)}
⊆ (circleMap 0 R)⁻¹' (h₃f.toFinset) := by
intro a ha
simp at ha
simp
by_contra C
have t₀ : (circleMap 0 R a) ∈ Metric.closedBall 0 R := by
apply circleMap_mem_closedBall
exact le_of_lt hR
have t₁ : f (circleMap 0 R a) ≠ 0 := by
let A := h₁f (circleMap 0 R a) t₀
rw [← A.order_eq_zero_iff]
unfold MeromorphicOn.divisor at C
simp [t₀] at C
rcases C with C₁|C₂
· assumption
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
let C := fun q ↦ B.1 q ⟨(circleMap 0 R a), t₀⟩
rw [C₂] at C
have : ∃ u : (Metric.closedBall (0 : ) R), (h₁f u u.2).meromorphicAt.order ≠ := by
use ⟨(0 : ), (by simp; exact le_of_lt hR)⟩
let H := h₁f 0 (by simp; exact le_of_lt hR)
let K := H.order_eq_zero_iff.2 h₂f
rw [K]
simp
let D := C this
tauto
exact ha.2 (decompose_f (circleMap 0 R a) t₀ t₁)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
exact Finset.finite_toSet h₃f.toFinset
--
exact Ne.symm (ne_of_lt hR)
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 R x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 R x))))
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
congr
have t₀ {x : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 R x - s))) ⊆ h₃f.toFinset := by
intro s hs
simp at hs
simp [hs.1]
conv =>
left
arg 1
intro x
rw [finsum_eq_sum_of_support_subset _ t₀]
rw [intervalIntegral.integral_finset_sum]
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))) ⊆ h₃f.toFinset := by
simp
intro s
contrapose!
simp
tauto
conv =>
right
rw [finsum_eq_sum_of_support_subset _ t₁]
simp
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
apply intervalIntegrable_logAbs_circleMap_sub_const
linarith
--
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs ( F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ circleMap 0 R :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
let A := h₃F ⟨(circleMap 0 R x), circleMap_mem_closedBall 0 (le_of_lt hR) x⟩
exact A
--
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
let A := h₂F (circleMap 0 R x) (circleMap_mem_closedBall 0 (le_of_lt hR) x)
apply A.continuousAt
exact (continuous_circleMap 0 R).continuousAt
-- IntervalIntegrable (fun x => ∑ᶠ (s : ), ↑(↑⋯.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) MeasureTheory.volume 0 (2 * π)
--simp? at h₁G
have h₁G' {z : } : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * log (Complex.abs (z - s))) ⊆ ↑h₃f.toFinset := by
exact h₁G
conv =>
arg 1
intro z
rw [finsum_eq_sum_of_support_subset _ h₁G']
conv =>
arg 1
rw [← Finset.sum_fn]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i‖ = R
-- case pos
--exact int'₂ h₂i
apply intervalIntegrable_logAbs_circleMap_sub_const (Ne.symm (ne_of_lt hR))
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero R x]
simp
linarith
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 R x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 R, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
exact AnalyticAt.holomorphicAt (h₂F z hz)
exact h₃F ⟨z, hz⟩
apply harmonic_meanValue₁ R hR t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖) ⊆ ↑h₃f.toFinset := by
intro s hs
simp at hs
simp [hs.1]
rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G
have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖ = ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (2 * π) * log R := by
apply Finset.sum_congr rfl
intro s hs
have : s ∈ Metric.closedBall 0 R := by
let A := h₁f.meromorphicOn.divisor.supportInU
have : s ∈ Function.support h₁f.meromorphicOn.divisor := by
simp at hs
exact hs
exact A this
rw [int₄ hR this]
linarith
rw [this] at decompose_int_G
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
let X := h₄F
nth_rw 1 [h₄F]
simp
have : π⁻¹ * 2⁻¹ * (2 * π) = 1 := by
calc π⁻¹ * 2⁻¹ * (2 * π)
_ = π⁻¹ * (2⁻¹ * 2) * π := by ring
_ = π⁻¹ * π := by ring
_ = (π⁻¹ * π) := by ring
_ = 1 := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
--rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [add_comm]
rw [mul_add]
rw [← mul_assoc (π⁻¹ * 2⁻¹), this]
simp
rw [add_comm]
nth_rw 2 [add_comm]
rw [add_assoc]
congr
rw [Finset.mul_sum]
rw [← sub_eq_add_neg]
rw [← Finset.sum_sub_distrib]
rw [Finset.sum_congr rfl]
intro s hs
rw [log_mul, log_inv]
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
rw [mul_comm _ (2 * π)]
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
rw [this]
simp
rw [mul_add]
ring
--
exact Ne.symm (ne_of_lt hR)
--
simp
by_contra hCon
rw [hCon] at hs
simp at hs
exact hs h'''₂f
--
intro s hs
apply zpow_ne_zero
simp
by_contra hCon
rw [hCon] at hs
simp at hs
exact hs h'''₂f
--
simp only [ne_eq, map_eq_zero]
rw [← ne_eq]
exact h₃F ⟨0, (by simp; exact le_of_lt hR)⟩
--
rw [Finset.prod_ne_zero_iff]
intro s hs
apply zpow_ne_zero
simp
by_contra hCon
rw [hCon] at hs
simp at hs
exact hs h'''₂f
theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : MeromorphicOn f (Metric.closedBall 0 R))
(h₁f' : StronglyMeromorphicAt f 0)
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let F := h₁f.makeStronglyMeromorphicOn
have : F 0 = f 0 := by
unfold F
have : 0 ∈ (Metric.closedBall 0 R) := by
simp [hR]
exact le_of_lt hR
unfold MeromorphicOn.makeStronglyMeromorphicOn
simp [this]
intro h₁R
let A := StronglyMeromorphicAt.makeStronglyMeromorphic_id h₁f'
simp_rw [A]
rw [← this]
rw [← this] at h₂f
clear this
have h₁F := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f
rw [jensen₀ hR F h₁F h₂f]
rw [h₁f.divisor_of_makeStronglyMeromorphicOn]
congr 2
have {x : } : log ‖F (circleMap 0 R x)‖ = (fun z ↦ log ‖F z‖) (circleMap 0 R x) := by
rfl
conv =>
left
arg 1
intro x
rw [this]
have {x : } : log ‖f (circleMap 0 R x)‖ = (fun z ↦ log ‖f z‖) (circleMap 0 R x) := by
rfl
conv =>
right
arg 1
intro x
rw [this]
have h'R : R ≠ 0 := by exact Ne.symm (ne_of_lt hR)
have hU : Metric.sphere (0 : ) |R| ⊆ (Metric.closedBall (0 : ) R) := by
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
nth_rw 2 [this]
exact Metric.sphere_subset_closedBall
let A := integral_congr_changeDiscrete h'R hU (f₁ := fun z ↦ log ‖F z‖) (f₂ := fun z ↦ log ‖f z‖)
apply A
clear A
rw [Filter.eventuallyEq_iff_exists_mem]
have A := makeStronglyMeromorphicOn_changeDiscrete'' h₁f
rw [Filter.eventuallyEq_iff_exists_mem] at A
obtain ⟨s, h₁s, h₂s⟩ := A
use s
constructor
· exact h₁s
· intro x hx
let A := h₂s hx
simp
rw [A]