Working
This commit is contained in:
parent
93006a2a7e
commit
22d2eae3f6
@ -30,27 +30,28 @@ noncomputable def MeromorphicOn.N_zero
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
|
||||
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict |r|).divisor z)) * log (r * ‖z‖⁻¹)
|
||||
|
||||
noncomputable def MeromorphicOn.N_infty
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
|
||||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict |r|).divisor z))) * log (r * ‖z‖⁻¹)
|
||||
|
||||
theorem Nevanlinna_counting₀
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
hf.inv.N_infty = hf.N_zero := by
|
||||
|
||||
funext r
|
||||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||||
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||||
repeat
|
||||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||
apply Finset.sum_congr rfl
|
||||
intro x hx
|
||||
congr
|
||||
rw [hf.restrict_inv r]
|
||||
let B := hf.restrict_inv |r|
|
||||
rw [MeromorphicOn.divisor_inv]
|
||||
simp
|
||||
--
|
||||
@ -67,9 +68,8 @@ theorem Nevanlinna_counting₀
|
||||
contrapose
|
||||
simp
|
||||
intro hx h₁x
|
||||
rw [hf.restrict_inv r] at h₁x
|
||||
have hh : MeromorphicOn f (Metric.closedBall 0 r) := hf.restrict r
|
||||
rw [hh.divisor_inv] at h₁x
|
||||
|
||||
rw [MeromorphicOn.divisor_inv (hf.restrict |r|)] at h₁x
|
||||
simp at h₁x
|
||||
rw [hx] at h₁x
|
||||
tauto
|
||||
@ -78,13 +78,13 @@ theorem Nevanlinna_counting₀
|
||||
theorem Nevanlinna_counting
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
|
||||
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict |r|).divisor z) * log (r * ‖z‖⁻¹) := by
|
||||
|
||||
funext r
|
||||
simp only [Pi.sub_apply]
|
||||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||||
|
||||
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||||
repeat
|
||||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||
rw [← Finset.sum_sub_distrib]
|
||||
@ -92,9 +92,9 @@ theorem Nevanlinna_counting
|
||||
congr
|
||||
funext x
|
||||
congr
|
||||
by_cases h : 0 ≤ (hf.restrict r).divisor x
|
||||
by_cases h : 0 ≤ (hf.restrict |r|).divisor x
|
||||
· simp [h]
|
||||
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
|
||||
· have h' : 0 ≤ -((hf.restrict |r|).divisor x) := by
|
||||
simp at h
|
||||
apply Int.le_neg_of_le_neg
|
||||
simp
|
||||
@ -154,7 +154,7 @@ theorem Nevanlinna_firstMain₁
|
||||
(h₁f : MeromorphicOn f ⊤)
|
||||
(h₂f : StronglyMeromorphicAt f 0)
|
||||
(h₃f : f 0 ≠ 0) :
|
||||
(fun r ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
||||
(fun _ ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
||||
|
||||
rw [add_eq_of_eq_sub]
|
||||
unfold MeromorphicOn.T_infty
|
||||
@ -170,10 +170,55 @@ theorem Nevanlinna_firstMain₁
|
||||
simp
|
||||
rw [← Nevanlinna_proximity h₁f]
|
||||
|
||||
have hr : 0 < r := by sorry
|
||||
by_cases h₁r : r = 0
|
||||
rw [h₁r]
|
||||
simp
|
||||
have : π⁻¹ * 2⁻¹ * (2 * π * log (Complex.abs (f 0))) = (π⁻¹ * (2⁻¹ * 2) * π) * log (Complex.abs (f 0)) := by
|
||||
ring
|
||||
rw [this]
|
||||
clear this
|
||||
simp [pi_ne_zero]
|
||||
|
||||
by_cases hr : 0 < r
|
||||
let A := jensen hr f (h₁f.restrict r) h₂f h₃f
|
||||
simp at A
|
||||
rw [A]
|
||||
clear A
|
||||
simp
|
||||
have {A B : ℝ} : -A + B = B - A := by ring
|
||||
rw [this]
|
||||
have : |r| = r := by
|
||||
rw [← abs_of_pos hr]
|
||||
simp
|
||||
rw [this]
|
||||
|
||||
-- case 0 < -r
|
||||
have h₂r : 0 < -r := by
|
||||
simp [h₁r, hr]
|
||||
by_contra hCon
|
||||
-- Assume ¬(r < 0), which means r >= 0
|
||||
push_neg at hCon
|
||||
-- Now h is r ≥ 0, so we split into cases
|
||||
rcases lt_or_eq_of_le hCon with h|h
|
||||
· tauto
|
||||
· tauto
|
||||
let A := jensen h₂r f (h₁f.restrict (-r)) h₂f h₃f
|
||||
simp at A
|
||||
rw [A]
|
||||
clear A
|
||||
simp
|
||||
have {A B : ℝ} : -A + B = B - A := by ring
|
||||
rw [this]
|
||||
|
||||
congr 1
|
||||
congr 1
|
||||
let A := integrabl_congr_negRadius (f := (fun z ↦ log (Complex.abs (f z)))) (r := r)
|
||||
rw [A]
|
||||
have : |r| = -r := by
|
||||
rw [← abs_of_pos h₂r]
|
||||
simp
|
||||
rw [this]
|
||||
|
||||
let A := jensen
|
||||
sorry
|
||||
|
||||
theorem Nevanlinna_firstMain₂
|
||||
{f : ℂ → ℂ}
|
||||
@ -181,4 +226,5 @@ theorem Nevanlinna_firstMain₂
|
||||
{r : ℝ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
|(h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r)| ≤ logpos ‖a‖ + log 2 := by
|
||||
|
||||
sorry
|
||||
|
@ -96,7 +96,7 @@ theorem jensen₀
|
||||
by_contra hCon
|
||||
rw [← hCon] at hx
|
||||
simp at hx
|
||||
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||||
rw [← (h₁f z h₁z).order_eq_zero_iff] at h₂z
|
||||
unfold MeromorphicOn.divisor at hx
|
||||
simp [h₁z] at hx
|
||||
tauto
|
||||
@ -112,7 +112,7 @@ theorem jensen₀
|
||||
by_contra hCon
|
||||
rw [← hCon] at hx
|
||||
simp at hx
|
||||
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||||
rw [← (h₁f z h₁z).order_eq_zero_iff] at h₂z
|
||||
unfold MeromorphicOn.divisor at hx
|
||||
simp [h₁z] at hx
|
||||
tauto
|
||||
@ -198,62 +198,28 @@ theorem jensen₀
|
||||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||
intro i _
|
||||
apply IntervalIntegrable.const_mul
|
||||
--simp at this
|
||||
by_cases h₂i : ‖i‖ = R
|
||||
-- case pos
|
||||
sorry
|
||||
--exact int'₂ h₂i
|
||||
apply intervalIntegrable_logAbs_circleMap_sub_const
|
||||
linarith
|
||||
--
|
||||
-- case neg
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
|
||||
have : (fun x => log (Complex.abs ( F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ circleMap 0 R :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
|
||||
by_contra ha'
|
||||
conv at h₂i =>
|
||||
arg 1
|
||||
rw [← ha']
|
||||
rw [Complex.norm_eq_abs]
|
||||
rw [abs_circleMap_zero R x]
|
||||
simp
|
||||
linarith
|
||||
let A := h₃F ⟨(circleMap 0 R x), circleMap_mem_closedBall 0 (le_of_lt hR) x⟩
|
||||
exact A
|
||||
--
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 R x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
have : (circleMap 0 R x) ∈ (Metric.closedBall 0 R) := by
|
||||
simp
|
||||
rw [abs_le]
|
||||
simp [hR]
|
||||
exact le_of_lt hR
|
||||
exact h₃F ⟨(circleMap 0 R x), this⟩
|
||||
|
||||
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply DifferentiableAt.continuousAt (𝕜 := ℂ)
|
||||
apply AnalyticAt.differentiableAt
|
||||
apply h₂F (circleMap 0 R x)
|
||||
simp; rw [abs_le]; simp [hR]; exact le_of_lt hR
|
||||
-- ContinuousAt (fun x => circleMap 0 1 x) x
|
||||
apply Continuous.continuousAt
|
||||
apply continuous_circleMap
|
||||
let A := h₂F (circleMap 0 R x) (circleMap_mem_closedBall 0 (le_of_lt hR) x)
|
||||
apply A.continuousAt
|
||||
exact (continuous_circleMap 0 R).continuousAt
|
||||
-- IntervalIntegrable (fun x => ∑ᶠ (s : ℂ), ↑(↑⋯.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) MeasureTheory.volume 0 (2 * π)
|
||||
--simp? at h₁G
|
||||
have h₁G' {z : ℂ} : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * log (Complex.abs (z - s))) ⊆ ↑h₃f.toFinset := by
|
||||
@ -273,9 +239,8 @@ theorem jensen₀
|
||||
by_cases h₂i : ‖i‖ = R
|
||||
-- case pos
|
||||
--exact int'₂ h₂i
|
||||
sorry
|
||||
apply intervalIntegrable_logAbs_circleMap_sub_const (Ne.symm (ne_of_lt hR))
|
||||
-- case neg
|
||||
--have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
|
Loading…
Reference in New Issue
Block a user