164 lines
5.1 KiB
Plaintext
164 lines
5.1 KiB
Plaintext
import Mathlib.Analysis.Complex.CauchyIntegral
|
||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||
import Nevanlinna.analyticOn_zeroSet
|
||
import Nevanlinna.harmonicAt_examples
|
||
import Nevanlinna.harmonicAt_meanValue
|
||
|
||
open Real
|
||
|
||
|
||
def ZeroFinset
|
||
{f : ℂ → ℂ}
|
||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z) :
|
||
Finset ℂ := by
|
||
|
||
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ℂ) 1
|
||
have hZ : Set.Finite Z := by sorry
|
||
exact hZ.toFinset
|
||
|
||
|
||
def order
|
||
{f : ℂ → ℂ}
|
||
{hf : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z} :
|
||
ZeroFinset hf → ℕ := by sorry
|
||
|
||
|
||
lemma ZeroFinset_mem_iff
|
||
{f : ℂ → ℂ}
|
||
(hf : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||
(z : ℂ) :
|
||
z ∈ ↑(ZeroFinset hf) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
|
||
sorry
|
||
|
||
|
||
theorem jensen_case_R_eq_one
|
||
(f : ℂ → ℂ)
|
||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||
(h'₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, AnalyticAt ℂ f z)
|
||
(h₂f : f 0 ≠ 0) :
|
||
log ‖f 0‖ = -∑ s : ZeroFinset h₁f, order s * log (‖s.1‖⁻¹) + (2 * π )⁻¹ * ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ := by
|
||
|
||
have F : ℂ → ℂ := by sorry
|
||
have h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by sorry
|
||
have h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0 := by sorry
|
||
have h₃F : f = fun z ↦ (F z) * ∏ s : ZeroFinset h₁f, (z - s) ^ (order s) := by sorry
|
||
|
||
let G := fun z ↦ log ‖F z‖ + ∑ s : ZeroFinset h₁f, (order s) * log ‖z - s‖
|
||
|
||
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
||
intro z h₁z h₂z
|
||
|
||
conv =>
|
||
left
|
||
arg 1
|
||
rw [h₃F]
|
||
rw [norm_mul]
|
||
rw [norm_prod]
|
||
right
|
||
arg 2
|
||
intro b
|
||
rw [norm_pow]
|
||
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
||
rw [Real.log_mul]
|
||
rw [Real.log_prod]
|
||
conv =>
|
||
left
|
||
right
|
||
arg 2
|
||
intro s
|
||
rw [Real.log_pow]
|
||
dsimp [G]
|
||
|
||
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
|
||
simp
|
||
intro s hs
|
||
rw [ZeroFinset_mem_iff h₁f s] at hs
|
||
rw [← hs.2] at h₂z
|
||
tauto
|
||
|
||
-- Complex.abs (F z) ≠ 0
|
||
simp
|
||
exact h₂F z h₁z
|
||
|
||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||
by_contra C
|
||
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
|
||
simp at h₂s
|
||
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
|
||
tauto
|
||
|
||
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||
rw [intervalIntegral.integral_congr_ae]
|
||
rw [MeasureTheory.ae_iff]
|
||
apply Set.Countable.measure_zero
|
||
simp
|
||
|
||
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
||
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
||
intro a ha
|
||
simp at ha
|
||
simp
|
||
by_contra C
|
||
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
|
||
sorry
|
||
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
||
|
||
apply Set.Countable.mono t₀
|
||
apply Set.Countable.preimage_circleMap
|
||
apply Set.Finite.countable
|
||
apply finiteZeros
|
||
|
||
-- IsPreconnected (Metric.closedBall (0 : ℂ) 1)
|
||
apply IsConnected.isPreconnected
|
||
apply Convex.isConnected
|
||
exact convex_closedBall 0 1
|
||
exact Set.nonempty_of_nonempty_subtype
|
||
--
|
||
exact isCompact_closedBall 0 1
|
||
--
|
||
exact h'₁f
|
||
use 0
|
||
exact ⟨Metric.mem_closedBall_self (zero_le_one' ℝ), h₂f⟩
|
||
exact Ne.symm (zero_ne_one' ℝ)
|
||
|
||
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
||
sorry
|
||
|
||
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f).attach, ↑(order x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||
dsimp [G]
|
||
rw [intervalIntegral.integral_add]
|
||
rw [intervalIntegral.integral_finset_sum]
|
||
simp_rw [intervalIntegral.integral_const_mul]
|
||
|
||
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
|
||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||
|
||
-- This won't work, because the function **is not** continuous. Need to fix.
|
||
intro i hi
|
||
apply IntervalIntegrable.const_mul
|
||
exact h₁Gi i hi
|
||
|
||
apply Continuous.intervalIntegrable
|
||
apply continuous_iff_continuousAt.2
|
||
intro x
|
||
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||
rfl
|
||
rw [this]
|
||
apply ContinuousAt.comp
|
||
apply Real.continuousAt_log
|
||
simp
|
||
|
||
by_contra ha'
|
||
let A := ha i
|
||
rw [← ha'] at A
|
||
simp at A
|
||
apply ContinuousAt.comp
|
||
apply Complex.continuous_abs.continuousAt
|
||
fun_prop
|
||
|
||
sorry
|
||
|
||
|
||
sorry
|