nevanlinna/Nevanlinna/holomorphic_JensenFormula2....

164 lines
5.1 KiB
Plaintext
Raw Normal View History

2024-08-12 13:05:55 +02:00
import Mathlib.Analysis.Complex.CauchyIntegral
2024-08-21 17:04:45 +02:00
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOn_zeroSet
2024-08-12 13:05:55 +02:00
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
2024-08-21 17:04:45 +02:00
open Real
def ZeroFinset
{f : }
(h₁f : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt f z) :
Finset := by
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ) 1
have hZ : Set.Finite Z := by sorry
exact hZ.toFinset
2024-08-12 13:05:55 +02:00
2024-08-21 17:04:45 +02:00
def order
2024-08-12 13:05:55 +02:00
{f : }
2024-08-21 17:04:45 +02:00
{hf : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt f z} :
ZeroFinset hf → := by sorry
2024-08-12 16:26:20 +02:00
2024-08-21 17:04:45 +02:00
lemma ZeroFinset_mem_iff
{f : }
(hf : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt f z)
(z : ) :
z ∈ ↑(ZeroFinset hf) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
2024-08-12 13:05:55 +02:00
sorry
2024-08-21 17:04:45 +02:00
theorem jensen_case_R_eq_one
2024-08-12 13:05:55 +02:00
(f : )
2024-08-21 17:04:45 +02:00
(h₁f : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt f z)
(h'₁f : ∀ z ∈ Metric.closedBall (0 : ) 1, AnalyticAt f z)
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ s : ZeroFinset h₁f, order s * log (‖s.1‖⁻¹) + (2 * π )⁻¹ * ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ := by
have F : := by sorry
have h₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z := by sorry
have h₂F : ∀ z ∈ Metric.closedBall (0 : ) 1, F z ≠ 0 := by sorry
have h₃F : f = fun z ↦ (F z) * ∏ s : ZeroFinset h₁f, (z - s) ^ (order s) := by sorry
let G := fun z ↦ log ‖F z‖ + ∑ s : ZeroFinset h₁f, (order s) * log ‖z - s‖
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
conv =>
left
arg 1
rw [h₃F]
rw [norm_mul]
rw [norm_prod]
right
arg 2
intro b
rw [norm_pow]
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
rw [Real.log_mul]
rw [Real.log_prod]
conv =>
left
right
arg 2
intro s
rw [Real.log_pow]
dsimp [G]
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
simp
intro s hs
rw [ZeroFinset_mem_iff h₁f s] at hs
rw [← hs.2] at h₂z
tauto
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z h₁z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra C
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
simp at h₂s
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
tauto
have : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
intro a ha
simp at ha
simp
by_contra C
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
sorry
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
apply finiteZeros
-- IsPreconnected (Metric.closedBall (0 : ) 1)
apply IsConnected.isPreconnected
apply Convex.isConnected
exact convex_closedBall 0 1
exact Set.nonempty_of_nonempty_subtype
--
exact isCompact_closedBall 0 1
--
exact h'₁f
use 0
exact ⟨Metric.mem_closedBall_self (zero_le_one' ), h₂f⟩
exact Ne.symm (zero_ne_one' )
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
sorry
have : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f).attach, ↑(order x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
-- This won't work, because the function **is not** continuous. Need to fix.
intro i hi
apply IntervalIntegrable.const_mul
exact h₁Gi i hi
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
let A := ha i
rw [← ha'] at A
simp at A
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
sorry
2024-08-12 13:05:55 +02:00
sorry