160 lines
4.6 KiB
Plaintext
160 lines
4.6 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
theorem MeromorphicOn.decompose₁
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z₀ : ℂ}
|
||
(hz₀ : z₀ ∈ U)
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : StronglyMeromorphicAt f z₀)
|
||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤) :
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (AnalyticAt ℂ g z₀)
|
||
∧ (g z₀ ≠ 0)
|
||
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
|
||
|
||
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
|
||
have h₁h₁ : MeromorphicOn h₁ U := by
|
||
apply MeromorphicOn.zpow
|
||
apply AnalyticOnNhd.meromorphicOn
|
||
apply AnalyticOnNhd.sub
|
||
exact analyticOnNhd_id
|
||
exact analyticOnNhd_const
|
||
let n : ℤ := (-h₁f.divisor z₀)
|
||
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
|
||
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
|
||
use 1
|
||
constructor
|
||
· apply analyticAt_const
|
||
· constructor
|
||
· simp
|
||
· apply eventually_nhdsWithin_of_forall
|
||
intro z hz
|
||
simp
|
||
|
||
let g₁ := f * h₁
|
||
have h₁g₁ : MeromorphicOn g₁ U := by
|
||
apply h₁f.mul h₁h₁
|
||
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
|
||
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
|
||
rw [h₂h₁]
|
||
unfold n
|
||
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
|
||
conv =>
|
||
left
|
||
left
|
||
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
|
||
have
|
||
(a b c : ℤ)
|
||
(h : a + b = c) :
|
||
(a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by
|
||
rw [← h]
|
||
simp
|
||
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
|
||
simp
|
||
ring
|
||
|
||
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
|
||
have h₂g : StronglyMeromorphicAt g z₀ := by
|
||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
|
||
have h₁g : MeromorphicOn g U := by
|
||
intro z hz
|
||
by_cases h₁z : z = z₀
|
||
· rw [h₁z]
|
||
apply h₂g.meromorphicAt
|
||
· apply (h₁g₁ z hz).congr
|
||
rw [eventuallyEq_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use {z₀}ᶜ
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
|
||
unfold g
|
||
rw [← A]
|
||
· constructor
|
||
· exact isOpen_compl_singleton
|
||
· exact h₁z
|
||
have h₃g : (h₁g z₀ hz₀).order = 0 := by
|
||
unfold g
|
||
let B := m₂ (h₁g₁ z₀ hz₀)
|
||
let A := (h₁g₁ z₀ hz₀).order_congr B
|
||
rw [← A]
|
||
rw [h₂g₁]
|
||
have h₄g : AnalyticAt ℂ g z₀ := by
|
||
apply h₂g.analytic
|
||
rw [h₃g]
|
||
|
||
use g
|
||
constructor
|
||
· exact h₁g
|
||
· constructor
|
||
· exact h₄g
|
||
· constructor
|
||
· exact (h₂g.order_eq_zero_iff).mp h₃g
|
||
· funext z
|
||
by_cases hz : z = z₀
|
||
· rw [hz]
|
||
simp
|
||
by_cases h : h₁f.divisor z₀ = 0
|
||
· simp [h]
|
||
have h₂h₁ : h₁ = 1 := by
|
||
funext w
|
||
unfold h₁
|
||
simp [h]
|
||
have h₃g₁ : g₁ = f := by
|
||
unfold g₁
|
||
rw [h₂h₁]
|
||
simp
|
||
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
|
||
rwa [h₃g₁]
|
||
let A := h₄g₁.makeStronglyMeromorphic_id
|
||
unfold g
|
||
rw [← A, h₃g₁]
|
||
· have : (0 : ℂ) ^ h₁f.divisor z₀ = (0 : ℂ) := by
|
||
exact zero_zpow (h₁f.divisor z₀) h
|
||
rw [this]
|
||
simp
|
||
let A := h₂f.order_eq_zero_iff.not
|
||
simp at A
|
||
rw [← A]
|
||
unfold MeromorphicOn.divisor at h
|
||
simp [hz₀] at h
|
||
exact h.1
|
||
· simp
|
||
let B := m₁ (h₁g₁ z₀ hz₀) z hz
|
||
unfold g
|
||
rw [← B]
|
||
unfold g₁ h₁
|
||
simp [hz]
|
||
rw [mul_assoc]
|
||
rw [inv_mul_cancel₀]
|
||
simp
|
||
apply zpow_ne_zero
|
||
rwa [sub_ne_zero]
|
||
|
||
|
||
theorem MeromorphicOn.decompose₂
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{P : Finset ℂ}
|
||
(hP : P.toSet ⊆ U)
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : ∀ hp : p ∈ P, StronglyMeromorphicAt f p)
|
||
(h₃f : ∀ hp : p ∈ P, (h₂f hp).meromorphicAt.order ≠ ⊤) :
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (∀ p ∈ P, AnalyticAt ℂ g p)
|
||
∧ (∀ p ∈ P, g p ≠ 0)
|
||
∧ (f = g * ∏ p ∈ P, fun z ↦ (z - p) ^ (h₁f.divisor p)) := by
|
||
|
||
sorry
|