import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral theorem MeromorphicOn.decompose₁ {f : ℂ → ℂ} {U : Set ℂ} {z₀ : ℂ} (hz₀ : z₀ ∈ U) (h₁f : MeromorphicOn f U) (h₂f : StronglyMeromorphicAt f z₀) (h₃f : h₂f.meromorphicAt.order ≠ ⊤) : ∃ g : ℂ → ℂ, (MeromorphicOn g U) ∧ (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀) have h₁h₁ : MeromorphicOn h₁ U := by apply MeromorphicOn.zpow apply AnalyticOnNhd.meromorphicOn apply AnalyticOnNhd.sub exact analyticOnNhd_id exact analyticOnNhd_const let n : ℤ := (-h₁f.divisor z₀) have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff] use 1 constructor · apply analyticAt_const · constructor · simp · apply eventually_nhdsWithin_of_forall intro z hz simp let g₁ := f * h₁ have h₁g₁ : MeromorphicOn g₁ U := by apply h₁f.mul h₁h₁ have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)] rw [h₂h₁] unfold n rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f] conv => left left rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)] have (a b c : ℤ) (h : a + b = c) : (a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by rw [← h] simp rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0] simp ring let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt have h₂g : StronglyMeromorphicAt g z₀ := by exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀) have h₁g : MeromorphicOn g U := by intro z hz by_cases h₁z : z = z₀ · rw [h₁z] apply h₂g.meromorphicAt · apply (h₁g₁ z hz).congr rw [eventuallyEq_nhdsWithin_iff] rw [eventually_nhds_iff] use {z₀}ᶜ constructor · intro y h₁y h₂y let A := m₁ (h₁g₁ z₀ hz₀) y h₁y unfold g rw [← A] · constructor · exact isOpen_compl_singleton · exact h₁z have h₃g : (h₁g z₀ hz₀).order = 0 := by unfold g let B := m₂ (h₁g₁ z₀ hz₀) let A := (h₁g₁ z₀ hz₀).order_congr B rw [← A] rw [h₂g₁] have h₄g : AnalyticAt ℂ g z₀ := by apply h₂g.analytic rw [h₃g] use g constructor · exact h₁g · constructor · exact h₄g · constructor · exact (h₂g.order_eq_zero_iff).mp h₃g · funext z by_cases hz : z = z₀ · rw [hz] simp by_cases h : h₁f.divisor z₀ = 0 · simp [h] have h₂h₁ : h₁ = 1 := by funext w unfold h₁ simp [h] have h₃g₁ : g₁ = f := by unfold g₁ rw [h₂h₁] simp have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by rwa [h₃g₁] let A := h₄g₁.makeStronglyMeromorphic_id unfold g rw [← A, h₃g₁] · have : (0 : ℂ) ^ h₁f.divisor z₀ = (0 : ℂ) := by exact zero_zpow (h₁f.divisor z₀) h rw [this] simp let A := h₂f.order_eq_zero_iff.not simp at A rw [← A] unfold MeromorphicOn.divisor at h simp [hz₀] at h exact h.1 · simp let B := m₁ (h₁g₁ z₀ hz₀) z hz unfold g rw [← B] unfold g₁ h₁ simp [hz] rw [mul_assoc] rw [inv_mul_cancel₀] simp apply zpow_ne_zero rwa [sub_ne_zero] theorem MeromorphicOn.decompose₂ {f : ℂ → ℂ} {U : Set ℂ} {P : Finset ℂ} (hP : P.toSet ⊆ U) (h₁f : MeromorphicOn f U) (h₂f : ∀ hp : p ∈ P, StronglyMeromorphicAt f p) (h₃f : ∀ hp : p ∈ P, (h₂f hp).meromorphicAt.order ≠ ⊤) : ∃ g : ℂ → ℂ, (MeromorphicOn g U) ∧ (∀ p ∈ P, AnalyticAt ℂ g p) ∧ (∀ p ∈ P, g p ≠ 0) ∧ (f = g * ∏ p ∈ P, fun z ↦ (z - p) ^ (h₁f.divisor p)) := by sorry