nevanlinna/Nevanlinna/leftovers/analyticOnNhd_divisor.lean
2025-01-03 18:08:55 +01:00

60 lines
1.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def AnalyticOnNhd.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.toNat : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y _
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhds_iff]
use N
· simp [h₃y]
· tauto
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
exact h₁N y h₁y h₂y
· simp [h₃y]
· tauto